Image Processing

Thomas Funkhouser (covering for Finkelstein 9/18) Princeton University COS 426, Fall 2001

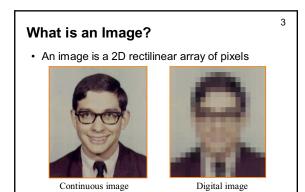
Overview

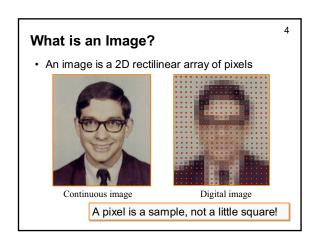
Image representation

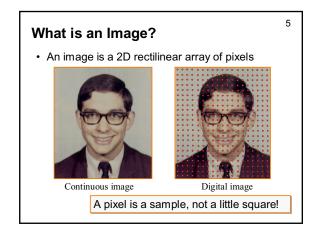
- What is an image?
- Halftoning and dithering
 - Trade spatial resolution for intensity resolution

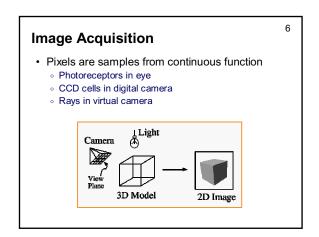
2

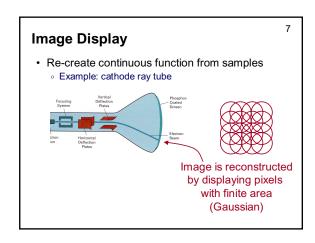
- Reduce visual artifacts due to quantization
- · Sampling and reconstruction
 - Key steps in image processing
 - Avoid visual artifacts due to aliasing

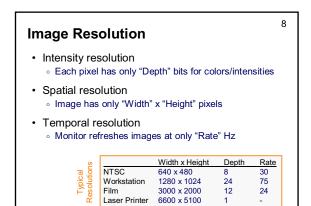












Sources of Error

• Intensity quantization

• Not enough intensity resolution

• Spatial aliasing

• Not enough spatial resolution

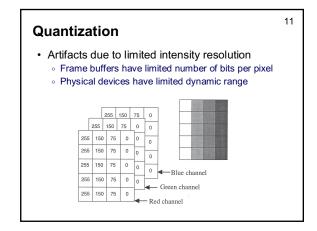
• Temporal aliasing

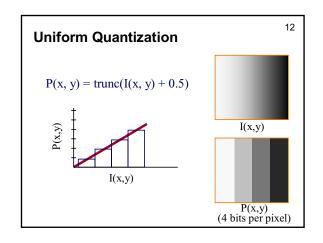
• Not enough temporal resolution $E^2 = \sum_{(x,y)} (I(x,y) - P(x,y))^2$

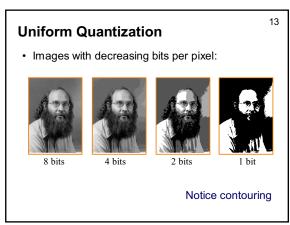
Image representation
 What is an image?

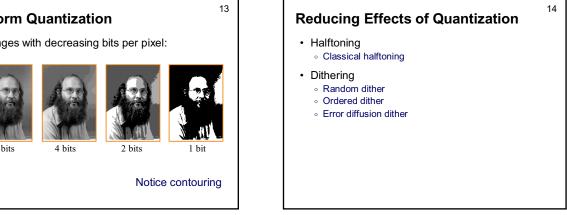
Halftoning and dithering
 Reduce visual artifacts due to quantization

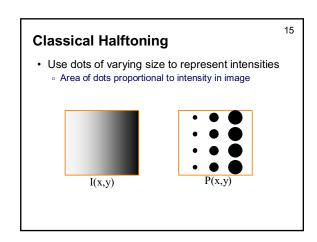
Sampling and reconstruction
 Reduce visual artifacts due to aliasing

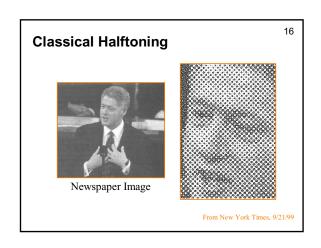


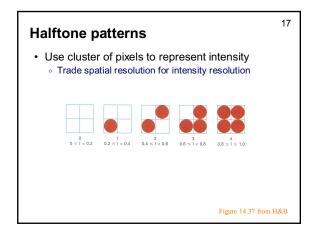


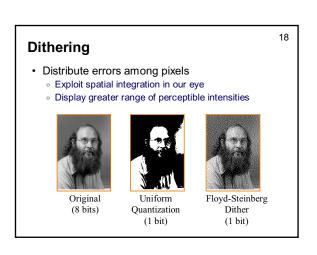


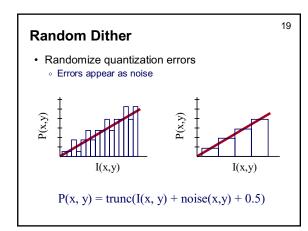


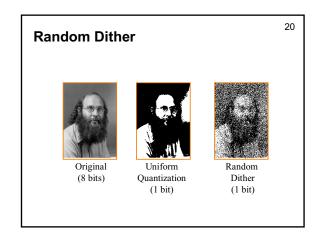










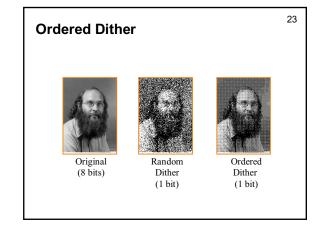


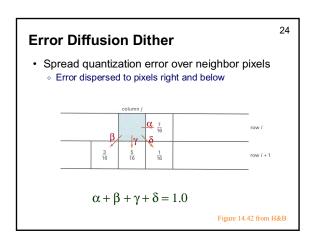
Ordered Dither • Pseudo-random quantization errors • Matrix stores pattern of threshholds $i = x \mod n$ $j = y \mod n$ e = I(x,y) - trunc(I(x,y)) if (e > D(i,j)) P(x,y) = ceil(I(x,y))else P(x,y) = floor(I(x,y))

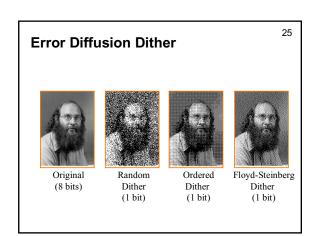
Ordered Dither

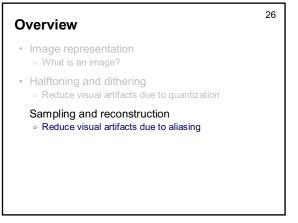
• Bayer's ordered dither matrices
$$D_n = \begin{bmatrix} 4D_{\eta/2} + D_2(1,1)U_{\eta/2} & 4D_{\eta/2} + D_2(1,2)U_{\eta/2} \\ 4D_{\eta/2} + D_2(2,1)U_{\eta/2} & 4D_{\eta/2} + D_2(2,2)U_{\eta/2} \end{bmatrix}$$

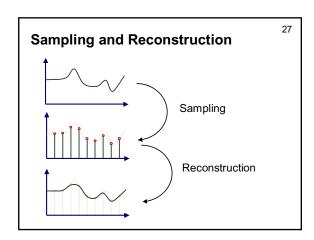
$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix} \qquad D_4 = \begin{bmatrix} 15 & 7 & 13 & 5 \\ 3 & 11 & 1 & 9 \\ 12 & 4 & 14 & 6 \\ 0 & 8 & 2 & 10 \end{bmatrix}$$

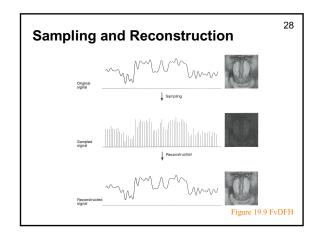


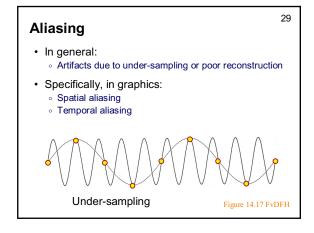


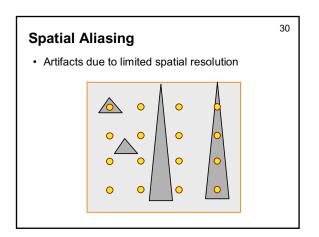


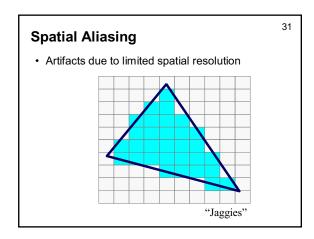


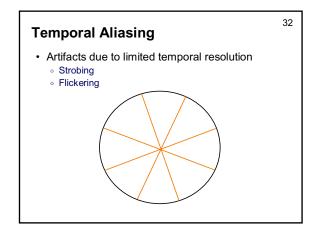


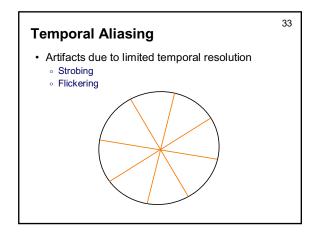


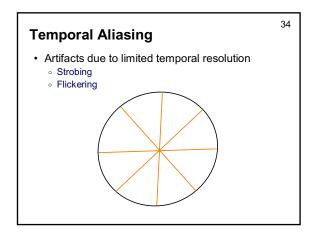


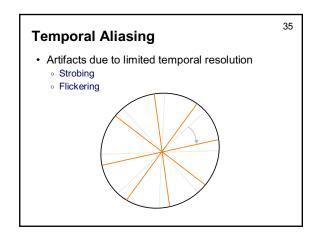


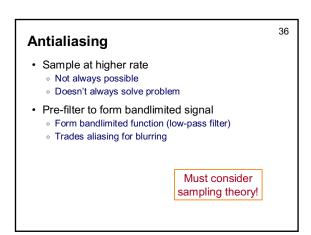




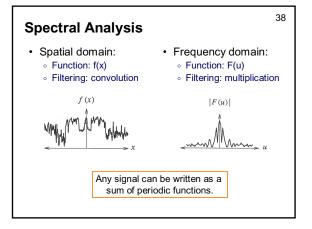


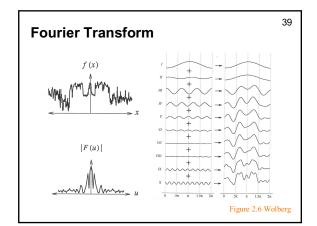






Sampling Theory • How many samples are required to represent a given signal without loss of information? • What signals can be reconstructed without loss for a given sampling rate?





Fourier Transform

40

· Fourier transform:

$$F(u) = \int_{-\infty}^{\infty} f(x)e^{-i2\pi xu} dx$$

• Inverse Fourier transform:

$$f(x) = \int_{-\infty}^{\infty} F(u)e^{+i2\pi ux}du$$

Sampling Theorem

41

- A signal can be reconstructed from its samples, if the original signal has no frequencies above 1/2 the sampling frequency - Shannon
- The minimum sampling rate for bandlimited function is called "Nyquist rate"

A signal is bandlimited if its highest frequency is bounded. The frequency is called the bandwidth.

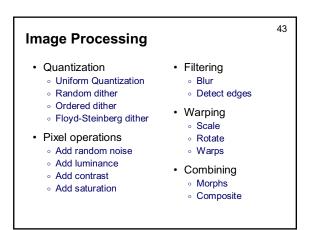
Convolution

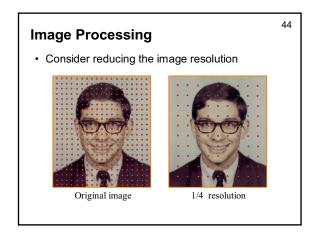
42

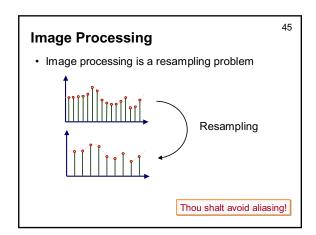
• Convolution of two functions (= filtering):

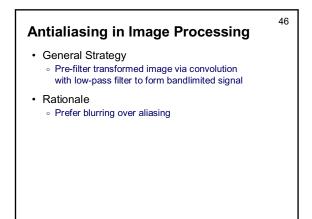
$$g(x) = f(x) \otimes h(x) = \int_{-\infty}^{\infty} f(\lambda)h(x - \lambda)d\lambda$$

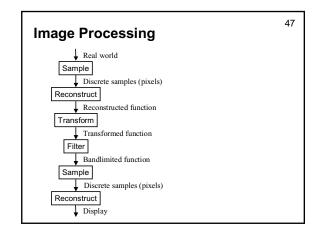
- · Convolution theorem
 - Convolution in frequency domain is same as multiplication in spatial domain, and vice-versa

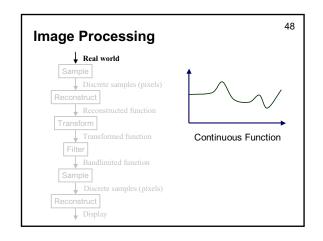


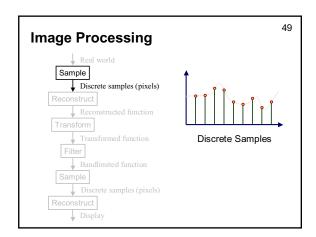


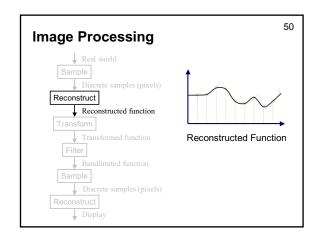


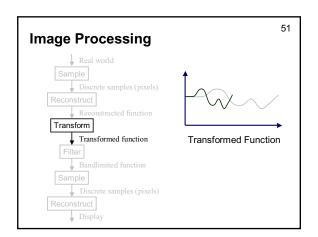


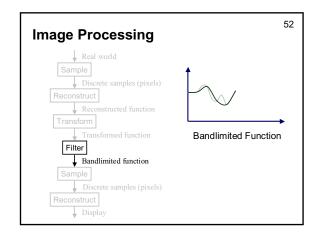


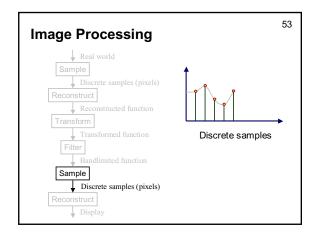


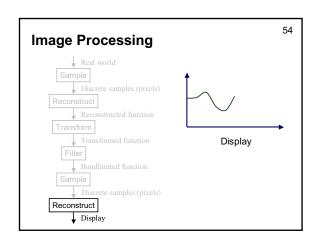


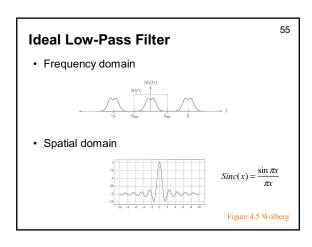


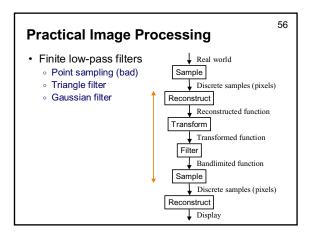


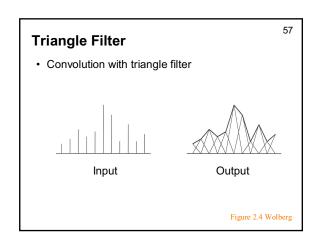


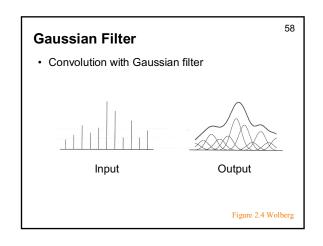


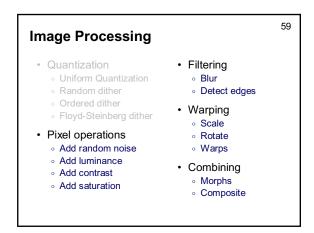


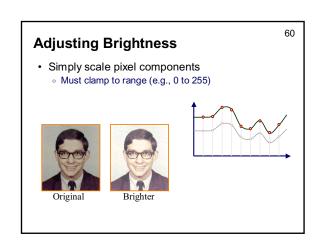


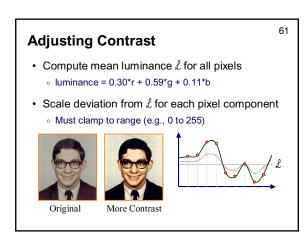


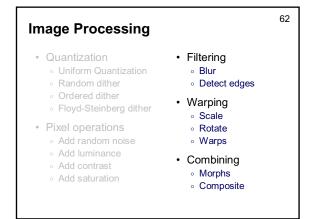


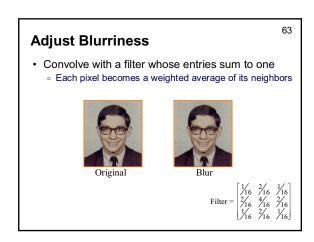


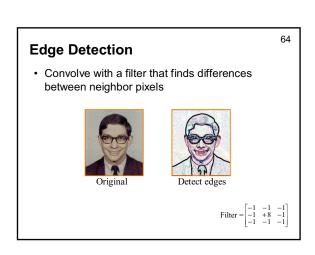


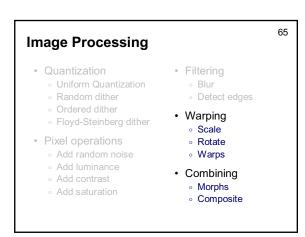












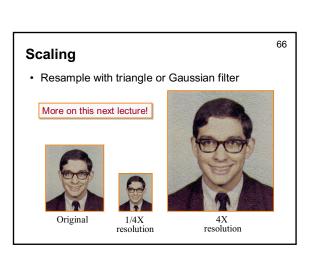


Image Processing

• Image processing is a resampling problem

- Avoid aliasing
- Use filtering

67

Summary

- · Image representation
 - o A pixel is a sample, not a little square
 - Images have limited resolution
- · Halftoning and dithering
 - Reduce visual artifacts due to quantization
 - o Distribute errors among pixels
 - » Exploit spatial integration in our eye
- · Sampling and reconstruction
 - Reduce visual artifacts due to aliasing
 - Filter to avoid undersampling
 - » Blurring is better than aliasing

68