
1

Fall 2001 1

Introduction to
Programming Systems

CS 217

Fall 2001 2

Goals
• Master the art of programming

– exploit abstraction, modularity, interfaces
– write efficient programs
– write robust programs

• Learn C and the Unix development tools
– C is the systems language of choice
– Unix has a rich development environment

• Introduction to computer systems
– operating systems and networks
– compilers
– machine architecture

Fall 2001 3

The C Programming Language
• Systems programming language

– originally used to write Unix and Unix tools

– data types and control structures close to most machines

– now also a popular application programming language

• Notable features
– pointer (address) arithmetic

– all functions are call-by-value

– simple 2-level scope structure

– no I/O or memory mgmt facilities (provided by libraries)

• History
– BCPL

�
B

�
C

�
K&R C

�
ANSI C

1960 1970 1972 1978 1988

2

Fall 2001 4

Systems Software

Machine Architecture

OS Kernel

Commands & Libraries

Application Programs

Process Management
Virtual Memory
File System
Network Subsystem

Compilers & Assemblers
Linker/Loader
Command Shell
Development Tools

debugger, profiler
editor, version control

Libraries
standard, math, …

Fall 2001 5

Difficult Lessons

• Program specifications are ambiguous (buggy)
– code you write (your assignments)

– code you use

• Programming is mostly about writing robust
code; the algorithms are often simple

• Systems programming cannot be rushed

Fall 2001 6

Course Details

• Lectures
– www.cs.princeton.edu/courses/cs217/

• Precepts
– work through programming examples
– demonstrate tools (gdb, makefiles, emacs, …)

• Assignments
– six total (yes, you implement a shell)
– 2/3rds of your grade

3

Fall 2001 7

Course Details (cont)

• Textbooks

– C: A Reference Manual. Harbison & Steele.

– SPARC Architecture, Assembly Language
Programming, and C. Paul.

– C Interfaces and Implementations. Hanson.

– Programming with GNU Software. Loukides
& Oram.

Fall 2001 8

Course Details (cont)

• Facilities
– CIT’s arizona cluster

– SPARC lab in Friend 016

– Your own laptop
ssh access to arizona

run GNU tools on Windows

run GNU tools on Linux

Fall 2001 9

Programming Style

• Variable names, indentation, structure,…

• Example style guide
www.cs.princeton.edu/courses/cs217/style.ps

• Who reads your code?
– compiler

– other programmers

• Which one cares about style?
• Macho programmer != good programmer

– avoid trying to be too clever

4

Fall 2001 10

Programming Style (cont)

• Names
– use descriptive names for globals and functions

e.g., elementCount

– use concise names for local variables
e.g., i (not arrayindex) for loop variable

– use case judiciously
e.g., PI, MAXLINE (reserve for constants)

– use consistent style for compound names
e.g., printword, PrintWord, print_word

– use module prefixes to distinguish names
e.g., Strset_T, Strset_add

Fall 2001 11

Programming Style (cont)
• Layout and indentation

– use white space judiciously
e.g., to separate code into paragraphs

– use indentation to emphasize structure
use editor’s autoindent facility

– break long lines at logical places
e.g., by operator precedence

– line up parallel structures
alpha = angle(p1, p2, p3);
beta = angle(p1, p2, p3);
gamma = angle(p1, p2, p3);

Fall 2001 12

Programming Style (cont)
• Control structures

if (x < v[mid]) if (x < v[mid])
high = mid – 1; high = mid – 1;

else if (x < v[mid]) else if (x > v[mid])
low = mid + 1; low = mid + 1;

else else
return mid; return mid;

implement multiway branches with if … else if … else
emphasize that only one action is performed
avoid empty then and else actions
handle default action, even if can’t happen (use assert(0))
avoid continue; minimize use of break and return
avoid complicated nested structures

5

Fall 2001 13

Programming Style (cont)

• Documentation
– comments should add new information

i = i + 1; /* add one to i */

– comments must agree with the code

– comment procedural interfaces liberally

– comment algorithms, not coding idiosyncracies
– master the language and its idioms; let the code

speak for itself

Fall 2001 14

Process Memory

0

0xffffffff

text

data

bss

heap

stack

}
program instructions

global variables

dynamic (malloc’ed) data

local/tmp variables (frame per procedure)

Fall 2001 15

Process Memory (cont)

int i;
int j = 74;
main()
{

char *p;
p = malloc(8);
…

}

bss
data

stack
heap

6

Fall 2001 16

Software is Hard

“What were the lessons I learned from so many years of intensive work
on the practical problem of setting type by computer? One of the most
important lessons, perhaps, is the fact that SOFTWARE IS HARD.
From now on I shall have significantly greater respect for every
successful software tool that I encounter. During the past decade I was
surprised to learn that the writing of programs for TeX and Metafont
proved to be much more difficult than all the other things I had done
(like proving theorems or writing books). The creation of good software
demands a significantly higher standard of accuracy than those other
things do, and it requires a longer attention span than other intellectual
tasks.”

Donald Knuth, 1989

