@ Computer Graphics, Volume 24, Number 4, August 1990

Comprehensible Rendering of 3-D Shapes

Takafumi Saito and Tokiichiro Takahashi

NTT Human Interface Laboratories
1-2356, Take, Yokosuka-shi
Kanagawa 238-03, Japan

Abstract

We propose a new rendering technique that produces 3-D
images with enhanced visual comprehensibility. Shape fea-
tures can be readily understood if certain geometric proper-
ties are enhanced. To achieve this, we develop drawing algo-
rithms for discontinuities, edges, contour lines, and curved
hatching. All of them are realized with 2-D image process-
ing operations instead of line tracking processes, so that
they can be efficiently combined with conventional surface
rendering algorithms.

Data about the geometric properties of the surfaces are
preserved as Geometric Buffers (G-buffers). Each G-buffer
contains one geometric property such as the depth or the
normal vector of each pixel. By using G-buffers as interme-
diate results, artificial enhancement processes are separated
from geometric processes (projection and hidden surface re-
moval) and physical processes (shading and texture map-
ping), and performed as postprocesses. This permits a user
to rapidly examine various combinations of enhancement
techniques without excessive recomputation, and easily ob-
tain the most comprehensible image.

Our method can be widely applied for various purposes.
Several of these, edge enhancement, line drawing illustra-
tions, topographical maps, medical imaging, and surface
analysis, are presented in this paper.

CR Categories and Subject Descriptors: 1.3.3 [Com-
puter Graphics]: Picture/Image Generation; 1.3.7 [Com-
puter Graphics]: Three-Dimensional Graphics and Realism;
[.4.3 [Image Processing]: Enhancement.

Additional Key Words and Phrases: comprehensible
rendering, visualization, geometric property, contour lines,
edge enhancement, line drawing illustrations, topographical
maps, medical imaging, surface analysis.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

©1990 ACM-0-89791-344-2/90/008/0197 $00.75

1 Introduction

Techniques for the comprehensible drawing of 3-dimensional
shapes are indispensable for various applications such as in-
dustrial design or medical imaging. Their importance in
computer graphics is not at all inferior to that of photo-
realistic rendering techniques. Comprehensibility is mainly
created through suitable enhancement rather than by accu-
rately simulating optical phenomena. For shape comprehen-
sion, line drawings are effectively used as an addition to or
substitute for surface coloring and shading [11]. For exam-
ple, profiles and edges car be enhanced with black or white
border lines. Curved surfaces can be made more comprehen-
sible by hatching with curved lines. These techniques are
commonly used in hand drawn illustrations. However, they
have not been adequately developed for computer graphics
compared to photorealistic rendering techniques.

The major problem for synthesizing a comprehensible
image is determining the most suitable combination of en-
hancement techniques. The reason is that comprehensibility
depends on the object, purpose, and sometimes the view-
ers’ preferences, and cannot be expressed with theoretical
definitions. Therefore, we must find the best combination
by trial and error for each object or application. In order to
maintain high productivity, graphics systems must be flexi-
ble and interactive to match the users’ experimentation. For
photorealistic rendering, there is a lot of excellent research
that aims to reduce image recomputation cost by preserving
intermediate information [7,13,15,17,18], and/or to build a
rendering system flexibly by separating it into small pro-
cedures which can be combined freely [3,4,14,22]. These
techniques might appear to be effective for comprehensible
rendering. However, enhancement using line drawings and
conventional surface rendering are so different that it is dif-
ficult to combine them efficiently. This difficulty arises, for
example, when eliminating hidden lines and surfaces for the
same image [20].

We propose a new enhancement technique for 3-D
shapes that conceptualizes geometric properties. We have
developed drawing algorithms for the basic enhancement
operations, the drawing of discontinuity lines, contour lines,
and curved hatching. All operations are realized with 2-
D image processing operations, not with line tracking pro-
cesses, so that they are suitable for interactive surface ren-

197

SIGGRAPH '90, Dallas, August 6-10, 1990

dering environments.

The geometric properties are preserved as a set of Ge-
omelric buffers (G-buffers'). A G-buffer set is obtained
by forming projection views and removing hidden surfaces.
Each buffer contains one geometric property, such as the
depth or the normal vector, of the visible object in each
pixel. The basic enhancement operations can be performed
using G-buffer contents during postprocessing. If geomet-
ric factors (i.e. shapes and camera parameters) are fixed,
any combination of enhancement can be examined without
changing the contents of the G-buffers.

The proposed method is also useful for photorealistic
rendering. It can be considered an extension of Perlin’s
Pixel Stream Editor [17]; it means that Perlin’s mapping
techniques can be easily performed on a G-buffer set. Since
the G-buffer set contains no physical (or optical) proper-
ties such as reflectance or colors, photorealistic techniques
¢an be used in postprocessing and performed independently
from enhancement operations. Therefore, the proposed
method can be considered a very powerful and flexible ren-
dering concept for various purposes.

2 Geometric Buffers

In this section, Geometric buffer set contents are intro-
duced. A G-buffer set is the intermediate rendering result,
and used as the input data for enhancement operations.
Each buffer contains a geometric property of the visible ob-
ject in each pixel. The following properties are the typical
contents of a G-buffer set.

o id: object/patch identifier
e ou: patch coordinate u

e ov: patch coordinate v

e 82Z: screen coordinate z AlB |C
(perspective depth) E
e wx: world coordinate x G
e wy: world coordinate y
¢ wz: world coordinate 2 .
Fig.1

e nx: normal vector z Neighboring pixels.

e ny: normal vector y

e nz: normal vector z

Note that this list is not exclusive nor a requirement; the
required G-buffer set depends on the required enhancement
techniques.

One of the significant advantages of preserving only ge-
ometric information in a G-buffer set is that the rendering
processes can be separated into the following three groups.

IThe pronunciation of ‘G’ is l[ge:] as in the German alphabet. We
decided it for the following reasons =) q - -

o~ v U~

¢ Many Japanese people pronounce both ‘z* and ‘g like [zi:],
which makes terrible confusion between z-buffer and G-buffer.

¢ Our first choise was g-buffer, but we found that the name
had been already used by Ghazanfarpour [8]. We tried to
find another suitable name but we could not. Therefore, we
changed ‘g’ to upper case ‘G’ with German pronunciation.

198

e geometric processes:
processes based on geometric factors such as object
shapes and camera parameters;
(ex. perspective projection, hidden surface removal)

e physical processes:
processes based on physical (optical) factors such as
reflectance, colors, textures;
(ex. shading, tecture mapping)

e artificial processes:
processes based on psychological or artistic factors;
(ex. enhancement)

G-buffers are formed during the geometric processes, and
are used by the physical and artificial processes. When
physical and /or artificial factors are changed, the new image
can be recalculated without modifying existing G-buffers if
the geometric factors are fixed. Since physical and artifi-
cial processes can be applied independently, we can rapidly
examine various combinations. Postprocessing is performed
as a combination of image processing operations. Since they
are uniform operations for 2-D arrays, special hardware or
vector processors can effectively accelerate the calculations.

In this paper, intermediate data which contains the
scalar value of each pixel is called an ‘image’. A G-buffer is
also called an image; one example is the ‘sz image’.

3 Basic Enhancement Operations

In this section, basic enhancement operations — disconti-
nuities, edges, contour lines, and curved hatching — are
described. Though all of them are line drawings, they are
realized with 2-D image processing operations instead of
line tracking.

3.1 Drawing Discontinuities

Discontinuities of an image can be extracted with a first
order differential operator. Various operators developed in
the image processing field [19] are available, however, we
recommend Sobel’s:

9= (A+2B+C—F-2G - H| @
+|C+2E+H—-A-2D-F|) /8,

where A-H and X are values of the neighboring pixels in
Fig.1. In Eq.(1), g is normalized so that it corresponds to
the gradient per pixel.

Discontinuities of the first order differentials of an image
can be extracted with a second order differential operator.
For this calculation, we recommend the following operator:

|=(8X-A-B-C-D—-E—-F—-G-H)/3 (2

Discontinuities can be extracted as sequences of peak
levels by a differential operator, however, they are not suit-
able for comprehensible rendering. Using a differential oper-
ator only, it is impossible to draw discontinuities as uniform
lines because of the following artifacts:

1) it is hard to distinguish discontinuities from large con-
tinuous changes;

@ Computer Graphics, Volume 24, Number 4, August 1990

2) darkness of extracted lines depends on the degree of
gaps.
Furthermore, second order differential operators have one

more artifact:

3) 0-th order discontinuities are extracted as double (neg-
ative and positive) lines.

These undesirable artifacts can be corrected using the
minimum and maximum of neighboring differential values.
An example of the normalization operator is as follows:

_ gmg:;i:g—:'.n (gma:t — Gmin > kg) (3)
P= ,;g— (gmam — gmin <= kg),

where g is the gradient value of a pixel, gmqez and gmin are
the maximum and minimum gradient values in the 3 x 3
neighboring pixels, and p is the normalized value. The
constant kg distinguishes discontinuities from continuous
changes; its value depends on the object. Equation (3) can
almost correct artifacts (1) and (2) of gradient images. For
discontinuities of first order differential, Eq.(3) can be ap-
plied to second order differential images with simple mod-
ifications. For artifact (3), the following operation can be
applied:

e = l . (gmaz <= ki)
(gma:7k1)2 (gmaa: > kl),

where [is the second order differential value of a pixel, and
e is the corrected value. The constant k; is the limit of
gradient for the elimination of 0-th order discontinuities.

(4)

3.2 Drawing Edges

The most significant application of drawing discontinuity is
edge drawing. Here, edge has the two following meanings:

e profile — the border line of an object on the screen;

¢ internal edge — a line where two faces meet.

Profiles and edges are the 0-th and first order discontinuities
of the depth image (sz image) respectively, thus the oper-
ations described in Subsection 3.1 can be simply applied.
Edges can be drawn stably with 2-D image processing op-
erators even for complicated free-form surfaces.

When an image is synthesized by perspective projec-
tion, the projection must be performed to depth values. In
this case, the general relation between the depth in the eye
coordinate z, and that in the screen coordinate z, (perspec-
tive depth) is as follows [16]:

z,=a+£}-. (5)

With Eq.(5), linearity of depth values on the screen is en-
sured. However, we recommend the following equation:

d2

w2,

Zs = (6)
where d is the distance between the view point and the
screen, and w is one pixel length on the screen in eye coor-
dinate (Fig.2). The advantage of Eq.(6) is that equalizes the
gradient value of depth image with the slope of the surface.

An example is shown in Fig.3. The depth image of a
machine nut, its first and second order differential images,
and corrected profile and internal edge images are presented.
The normalization of the profile image was performed by
using Eq.(3) with kg = 10. The correction of the internal
edge was realized by using Eq.(4) with k; = 2. However, the
artifacts (1) and (2) in Subsection 3.1 are not normalized
for the internal edge image; the sign of an internal edge
indicates its convexity, and the strength corresponds to its
sharpness.

Note that edges can also be extracted by using the ob-
ject/patch identifier (id image). This method is simple, but
not complete for concave curved surfaces. To draw edges
exactly, it is possible to combine the two methods.

y A

' screen ()bjec[
w Ipixel

i P
<(0 d Zv ;

Fig.2 Perspective depth.

depth image

internal edge image

profile image

Fig.3 An example of edge drawing.
199

SIGGRAPH '90, Dallas, August 6-10, 1990

3.3 Drawing Contour Lines

This subsection proposes a new algorithm for drawing con-
tour lines by using image processing techniques. Contour
lines are usually drawn by tracking [1,5], however, it is dif-
ficult to find starting points for all contours and to reli-
ably trace the contour when the scalar field has singular
points. The proposed method generates contour lines as
raster data; both input and output data are images and
the process consists of homogeneous calculations on each
pixel and its neighbors. The algorithm is robust even for
irregular or complex scalar fields, and can draw antialiased
smooth lines easily. Furthermore, the thinning of condensed
contour lines is also possible.

Assume that only the contour lines of value p are re-
guired. Let s be the value of a pixel of input image, g be
the gradient value at the pixel, and d be the contour width
in pixels. As the simplest method, each pixel value ¢ of the
output contour image can be obtained as follows:

- Is=2l\ (. _ec
C—Cb+f1(7 > (c b)y (7)

d
f1(t)={ ° 2”5“5) (8)

1 (£<),

where c. and cp are the densities of contour lines and back-
ground respectively. The function f1(t) defines the density
change of contours. The gradient value g can be obtained
by first order differential operators. The following operator
is recommended rather than the Sobel Operator (Eq.(1)):

9= (JA—X|+2/B—X|+|C-X|+2D—X|
+2|E — X|+|F — X| +2|G - X|+|H ~ X|) / 8,
(9

where A-H, X are neighboring pixel values in Fig.l. The
method using Eq.(7),(8) leads to excessive aliasing. By us-
ing a linear (Fig.4(b)) or a higher order function (c) for fi(t)
instead of a bilevel function (Eq.(8), Fig.4(a)), aliasing ar-
tifacts can be reduced.

1 lr (a)

|

o
// ©

-d/2 0 das2 t

(a) bilevel function
(b) linear function
(c) higher order function

Fig.4 Color change of a contour line.

It is generally difficult to draw accurate contour lines in
flat regions where p &~ s and g = 0, because the contours in
such regions are basically unsteady due to noise if the scalar
field is given by measured data. For the proposed algorithms
it is necessary to add an exceptional process when g = 0.

200

One solution is to let ¢ be close to a constant value (such
as cp) if g is less than a threshold value g.:

' c=cp+ fg (fl (ls;m),g).cc, (10)

fg(c,g) = { C;qe-c + (1 - _gﬂe_) Csparse Egcﬁ<ggi ge) (11)

where the function f; modifies the contour density when the
gradient g is too small. The constant cs;perse corresponds
to the contour density of flat regions; if ¢eparse = 0, the
density is the background color ¢p. Using this process, the
contour lines sometimes disappear locally or look noisy in
flat regions. Even in such cases, however, these algorithms
never fall into endless loops nor miss important contours
completely.

Contour lines with regular intervals can be drawn by
applying Eq.(7) to each nominated value. Assume that the
scalar values p, are nominated at an interval of g¢:

Pn = pa + ng, (12)

then pixel densities are given as follows:

c=c+ fy (fl ('!S_Tpkl> ,!]) * Ce, (13)

k=l8;p0+%J' (14)

If the gradient is large enough, the region is filled with
the contour density using Eq.(13),(14). However, it is desir-
able to change the density of concentrated regions (applica-
tion examples are shown in Subsection 4.3). By modifying
the function f; into Eq.(15), any density c4ense can be se-
lected:

where

T’H:C + (1 b ‘gac‘) Csparse (0 S g9 < gf)
fole,g) =4 © (9e<9<3) (15)
-dqrgc + (1 -— Eq;) Cdense (g S g)

An example of drawing the contour lines of a scalar
field:
s(z,y) ==y (16)

is shown in Fig.5. This example uses Eq.(10) and (15). The
gradient is zero at the center (0, 0), where the density coparse
is white. For the region of large gradient, the density c4ense
is black in (a), and gray in (b}. ‘

Fig.5 An example of contour lines.

@ Computer Graphics, Volume 24, Number 4, August 1990

3.4 Curved Hatching

In this subsection, we propose a method to express hatch-
ing with curved lines that indicate some type of structure
lines. Such lines include the latitudes and longitudes of a
sphere or a rotated object, intersections by a set of paral-
lel planes, and u-v mesh of a parametric surface. For the
above examples, a set of structure lines can be defined as
contour lines of a scalar field, so that they can be drawn
with the method given in Subsection 3.3. However, contour
lines drawn at regular intervals become too dense or sparse
depending on the gradient, and are not suitable for hatch-
ing. To uniformly hatch a surface, contour lines must be
drawn at regular pizel intervals.

Contour lines with uniform density can be drawn by
using the binary thinning outl technique. When the gradient
is large and the contour lines become dense, alternate con-
tours are thinned out. If the contour lines become sparse,
new contours are added between existing lines. One exam-
ple of the binary thinning out algorithm is as follows:

() o

0= nw+ (22 -1) 5 (o), (9

where
Pn =2"pq, (19)
n= |‘log2 dip + 1‘\ R (20)
Pd
8 2
k= |—+4=
|J’" + lJ , (21)

and pg i1s the standard interval in the scalar field. The
function f; has two terms; the first term corresponds to
the density of normal contour line, and the second term
corresponds to thinned or added contour line between nor-
mal lines. With these functions, contour lines are approxi-
mately spaced at intervals of d; on the screen. An example
of Eq.(16) is shown in Fig.6.

Fig.6 An example of curved hatching.

4 Examples and Applications

4.1 Edge Enhancement

A shaded image of 3-D shapes can be more comprehensi-
ble by enhancing edges (profiles and internal edges) with
black or white lines. This technique is commonly used in

hand drawn illustrations in the field of industrial design
[11]. When the shaded image is generated with conventional
computer graphics techniques, the edge drawing method in
Subsection 3.1 and 3.2 is easily applied. This is because the
depthimage (the sz image) can be obtained as a by-product
of hidden surface elimination. An enhanced image is gen-
erated by combining the edge image with the conventional
shaded image. This technique is not the original usage of
G-buffers; the shaded image and depth image are preserved
as intermediate results, and both have geometric and phys-
ical factors. However, existing rendering software can be
used with little modification, and the enhancement can be
rapidly examined.

Two examples are shown in Fig.7. The original shaded
image is (a), and the depth image is (b). Applying the dif-
{ferential operations on (b} (this process is shown in Fig.3),
an edge image (c) was obtained. An final enhanced image
(d) was generated by composing (b) and (c). In images (c)
and (d), convex edges are drawn with white lines, which
present the edge highlight effect [11,20]. Another example
of enhancement is shown in images (¢’) and (d’); all profiles
and edges are enhanced with black lines. It was generated
by taking absolute values of the internal edge image.

Edges in reflected or refracted objects can be also en-
hanced with the proposed method. For this purpose, a ray
length tmage is used instead of a depth image. The ray
length image contains the ray length form the eye to the
last reflected (or refracted) object in each pixel, which can
be obtained by ray-tracing. An example is shown in Fig.8.
Note that this method is simple but not complete; a com-
plete method is discussed in Subsection 5.1.

4.2 Line Drawing Illustration

A lot of hand drawn illustrations are produced with just
line drawings. Such illustrations consist of profiles, internal
edges, and surface structure lines. Hatching techniques are
effectively used instead of shading.

With our method, these basic techniques can be ex-
amined quickly through the use of G-buffers in computer
graphics, An example is shown in Fig.9. Six images (nx,
ny, nz, sz, ou, ov) were preserved as G-buffers. The
shaded image (sh) was calculated from the nx, ny and
nz images. The profile image (pr) was obtained from the
sz image. The curved hatching (cu, cv) was from (ou) ard
(ov). By enhancing the hatching images with the sh im-
age and composing with the pr image, the final illustrations
(shu, shv, shuv) were obtained.

Line drawing illustrations are easy to print or copy. No
special treatment for gray scale is required, and even an in-
expensive copy machine maintains the image quality. Fig-
ure 10 is an example of the effect; shaded (sh) and line
drawing {cv) images were copied five times. The quality of
the copied sh image is completely poor, however, the copied
cv image still has almost the same quality as the original.

201

SIGGRAPH '90, Dallas, August 6-10, 1990

(b) depth image

Fig.8 Edge enhancement of reflected objects.

(c) edge image (1) (d) enhanced image (1)

(c’) edge image (2) (d’) enhanced image (2) (sh) (shv)

Fig.7 Two examples of edge enhancement. Fig.10 Image quality through a copy machine.
Original pictures in Fig.9 were copied five times

final illustrations

curved hatching

G-Buffers

Fig.9 Process of drawing illustrations.

202

@ Computer Graphics, Volume 24, Number 4, August 1990

(sh) shaded image (mx3) combination of three enhanced images
Fig.11 Process of making a topographical map.

(pr) profile image

(mx2) combination of (pr) and (sh) (mx4) combination of four enhanced images
Fig.12 Bird’s eye maps.
203

SIGGRAPH '90, Dallas, August 6-10, 1990

TN

(b) enhanced image using G-buffer method

Fig.14 Medical imaging from CT data.
Data courtesy of Dr. Jin Tamai, Department of Radiology,
Nippon Medical School.

(b) pseudo-highlight pattern

Fig.15 An example of surface analysis.

(a) contour lines

204

Two bicubic patches are connected with C! continuity.

4.3 Topographical Maps

A topographical map can be drawn with a combination
of multiple techniques in order to effectively visualize the
height data. For example, the following basic techniques
are very familiar:

e contour lines — Usually they are drawn at regular in-
tervals. Often two contour thicknesses are used: thick
contours for large intervals such as 100m and thin con-
tours for small intervals such as 20m.

e color bands — To present absolute height, several dis-
crete color bands are used. Continuous color change is
also available.

o relief — To visualize the direction of slopes, shading is
applied.

These techniques can be easily simulated with the proposed
method if the height value is prepared for each pixel.

Figure 11 shows the process of making an enhancement
map of the region around NTT’s Yokosuka R&D Center.
Image (wz) is the original height data. In the contour line
image (cn), two contour thicknesses were used for 20m and
5m intervals. The constant cgense of Eq.(15) was set to the
line color (black) for 20m contours. On the other hand,
it was set to background color (white) for 5m contours.
With this technique, the combined contour image (cn) can
present both large and small gradient regions. When the
gradient becomes large and 5m contours become too dense,
they are thinned out and only 20m contours are displayed.
Image (sh) is the relief (shaded image), which was obtained
from the gradient images of the (wz) image. Image (mx3)
is the combination of (en), (sh), and color bands.

The above processes for normal (cartesian) maps can
be also applied to draw bird’s-eye maps, which is but one
advantage of our method. Example bird’s-eye maps are
shown in Fig.12, which shows the same region as in Fig.11.
Four G-buffers (sz, wx, wy, wz) were generated from the
original height data. The contour image (cn) and the relief
image (sh) were obtained from (wz) and (wx, wy, wz)
respectively. For bird’s-eye maps, the profile image (pr) is
also effective; it shows the shape of mountains clearly. In
Fig.12, four images (cn, pr, mx2, mx4) are presented,
where (mx2) is the combination of (pr) and (sh), and
(mx4) is the combination of (pr), {cn), (sh), and color
bands.

An artistic example — Japanese sumi-e (Indian-ink
drawing) — is shown in Fig.13. This picture was easily
obtained from (cn) and (sz).

4.4 Medical Imaging

Recently, a lot of research has been done for visualizing
volume data from CT images [6,12,21]. Many techniques
for shading, coloring, and transparent drawing have been
developed to generate comprehensible images. These tech-
niques are effective to present an overview of the data. How-
ever, medical doctors usually require the information about
a more specific part; how the shape of the object has been

@ Computer Graphics, Volume 24, Number 4, August 1990

deformed by the disease or injury, or what is the exact place
of the diseased part. For this requirement, we can make the
image more comprehensible with G-buffers and 2-D image
processing techniques. It is easy to draw profiles and con-
tour lines that show us some useful geometric information
of the 3-D shapes. These line drawings can be combined
interactively with a conventional shaded or colored image.

Example images are shown in Fig.14. The original voxel
data had 50 slices of CT data. After separating the bone
part [6], seven G-buffers (wx, wy, wz, sz, nx, ny, nz) were
generated by ray-tracing the voxel data. The enhanced im-
age (b) is the combination of four techniques: the profiles,
shading, the contour lines of (wz), and the color bands for
(wy). The conventional shaded image (a) is more realis-
tic, however, the enhanced image (b) gives us much more
information about the bone shapes.

4.5 Surface Analysis

Free form surfaces such as Bezier or spline surfaces are
widely used in geometric modeling. A shape with these
parametric surfaces can be controlled flexibly, and thetr con-
tinuity is mathematically well known. However, it is diffi-
cult to evaluate the quality of surfaces; because the quality
depends on a lot of geometric properties, and photorealistic
rendering is insufficient. For this purpose, it is important to
visualize and analyze the geometric properties. For exam-
ple, contour lines, pseudo-highlight patterns, and curvature
maps are effective to describe the features of a curved sur-
face [1,5,9,10]. In conventional methods, line drawings are
calculated by tracking, which requires a lot of consideration
about numerical analysis.

Some of the surface analysis techniques are easily re-
alized with our method. For example, a pseudo-highlight
pattern can be obtained as follows. A pseudo-highlight pat-
tern is the reflected image on a curved surface of parallel
lines that are assumed to lie at an infinite distance [10].
Assume the cylindrical coordinate whose z-axis is parallel
to the parallel lines. Then, each line has a constant 8 value.
For each pixel, the # value in the reflected image on the
visible surface is easily calculated from the normal vector
and the position of the surface, and the eye position. By
drawing contour lines or curved hatching for the image of 4
value, the psendo-highlight pattern is generated.

In Fig.15, contour lines (a), and a pseudo-highlight pat-
tern (b) of a curved surface are presented. The curved sur-
face consists of two bicubic patches that connect with C!
(not C?) continuity. The overview of the shape is compre-
hensibly presented with the contour lines. The discontinuity
is clearly shown in the pseudo-highlight pattern.

5 Discussions

5.1 Antialiasing and Reflective/Transparent
Objects

A G-buffer contains the property of only one surface per
pixel. This restriction leads the following problems:

¢ aliasing artifacts occur on surface borders;

o reflected or transparent images cannot be enhanced.

Some simple solutions are possible. For example, edges can
be anti-aliased by calculating the sz image as the average
depth value in each pixel. Edges in reflected images can be
drawn with the method in Subsection 4.1. However, these
are not fundamental solutions.

These problems can be solved by preserving the prop-
erties of all surfaces visible in each pixel. This can be real-
ized with FEztended G-Buffers. In Extended G-buffers, each
G-buffer has an extra memory area; the main area has the
property of the primary visible surface at each pixel, and the
extended area has the property of the other visible surfaces.
A couple of additional G-buffers are preserved to retain pixel
coverage information and the pointer to the next area for
each pixel. This method can be considered as an extension
of the A-buffer method [2], and reflection /refraction and an-
tialiasing can be achieved with duplicated operations on the
appropriate Extended G-buffers. Extended G-buffers have
not been implemented yet; it requires more investigation.

5.2 Local Enhancement

To draw a picture more comprehensibly, local enhancement
is often required for some specific regions. This can be pro-
vided with conventional 2-D paint systems. Various inter-
active paint systems have been developed and effectively
used. A system with useful enhancement tools for techni-
cal illustration has also been developed [11]. Using such
a paint system to enhance computer generated images, a
designer can draw an image with any enhancement as he
likes. However, it requires a great deal of effort to apply
the same enhancement technique globally, i.e. apply it to
a whole image, or a set of similar images such as an ani-
mation sequence. Furthermore, it is difficult to apply the
enhancement uniformly.

Our method is mainly for global enhancement. How-
ever, it is also possible to realize local enhancement by ap-
plying operations only where some condition is satisfied.
The object/patch identifier (the id image) can be effectively
used for this condition.

5.3 Errors and Artifacts

To implement G-buffers, the data type for each property
should be carefully considered. In our experimentations
shown in Section 4, all images including G-buffers are pre-
served as floating point data in order to avoid digitization
errors. However, it is rather inefficient in both execution
time and memory space. Though it is difficult to gener-
ally discuss the required precision of images, the following
expectation is usually true. The required precision of an
image depends on the subsequent operations. If the image
is just used for linear operations, 1 byte integers are usually
sufficient. Normal vectors (the nx, ny, nz images) are an
example if they are used for the calculation of diffuse re-
flection only. On the other hand, if the image is used for a
differential operation, 2 or 4 byte integers or floating point
numbers are needed. Since the process of drawing edges
has differential operations, the sz image must have higher
precision.

It is also necessary to maintain the precision in the ge-
ometric processes. If a G-buffer is generated with an ap-

205

SIGGRAPH '90, Dallas, August 6-10, 1990

proximation and is used for a differential operation, unde-
sirable artifacts sometimes occur. Such artifacts are shown
in Fig.3; thin lines shown on smooth curved surfaces are the
border of tessellated polygon patches. Linear interpolation
of normal vectors can make the shaded image smooth, how-
ever, the interpolation of depth values leads artifacts in the
internal edge image.

6 Conclusion

We have proposed a new technique for rendering 3-D shapes
comprehensibly. Enhancement techniques — drawing dis-
continuities, contour lines, and curved hatching — are de-
veloped with 2-D image processing operations, so that these
line drawing algorithms can be easily combined with con-
ventional surface rendering algorithms. By preserving ge-
ometric properties in G-buffers and visualizing the prop-
erties in postprocesses, various combinations of enhance-
ment techniques can be rapidly examined and a user can
efficiently select the best enhancement technique. Further-
more, G-buffers are also useful for photorealistic rendering.
Example images of edge enhancement, line drawing illus-
trations, topographical maps, medical imaging, and surface
analysis confirm that our method can be flexibly and effi-
ciently applied in various fields.

Acknowledgements

We would like to thank Dr. Hiroshi Yasuda, Kei Takikawa,
Dr. Rikuo Takano, and Dr. Masashi Okudaira for their con-
tinuous support. We also wish to thank Prof. Tomoyuki
Nishita of Fukuyama University, Mikio Shinya, Toshimitsu
Tanaka, and other colleagues in our section for helpful dis-
cussions. We are very grateful to Dr. Jin Tamai of Nippon
Medical School for providing us the original CT image data
of Fig.14, and Atsushi Kajiyama for his assistance to gen-
erate the G-buffers of Fig.14. Special thanks to Michael
Blackburn for his useful comments.

References

[1] Beck, J. M., Farouki, R. T, and Hinds, J. K. Surface
Analysis Methods. IEEE Computer Graphics and Ap-
plications 6, 12 (1986), 18-36.

[2] Carpenter, L. The A-buffer, an Antialiased Hidden
Surface Method. Computer Graphics 18, 3 (Proc. SIG-
GRAPH ’84) (1984), 103-108.

[3] Cook, R. L. Shade Trees. Computer Graphics 18, 3
(Proc. SIGGRAPH '84) (1984), 223-231.

[4] Crow, F. C. A More Flexible Image Generation En-
vironment. Computer Graphics 16, 3 (Proc. SIG-
GRAPH ’82) (1982), 9-18.

[5] Dickinson, R. R., Bartels, R. H., and Vermeulen, A. H,
The Interactive Editing and Contouring of Empirical
Fields. IEEE Computer Graphics and Applications 9,
3 (1989), 34-43.

(6] Diebin, R. A., Carpenter, L., and Hanrahan, P. Vol-
ume Rendering. Computer Graphics 22, 4 (Proc. SIG-
GRAPH '88) (1988), 65-T4.

206

[7] Duff, T. Compositing 3-D Rendering Images. Com-
puter Graphics 19, 3 (Proc. SIGGRAPH ’85) (1985),
41-44.

[8] Ghazanfarpour, D., and Peroche, B. A Fast Antialias-
ing Method with A-Buffer. In Proc. Furographics '87
(1987), 503-512.

[9] Higashi, M., Kohzen, I. and Nagasaka, J. An Inter-
active CAD System for Construction of Shapes with
High-quality Surface. In Computer Applications in
Production and Engineering (Proc. CAPE ’83) (1983),
371-390.

[10] Higashi, M., Kushimoto, T. and Hosaka, M. On Formu-
lation and Display for Visualizing Features and Eval-
nating Quality of Free-form Surfaces. In Proc. Furo-
graphics ‘90 (to appear).

[11] Kondo, K., Kimura, F., and Tajima, T. An Interac-
tive Rendering System with Shading. In Japan Annual
Reviews in Electronics, Computers & Telecommunica-
tions 18, Computer Science and Technologies, Kita-
gawa, T. (Ed.), Ohmsha and North-Holland, Tokyo,
1988, pp. 255-271.

[12] Lorensen, W. E., and Cline, H. E. Marching Cubes: A
High Resolution 3D Surface Construction Algorithms.
Computer Graphics 21, 4 (Proc. SIGGRAPH ’87)
(1987), 163-169.

[13] Mammem, A. Transparency and Antialiasing Algo-
rithms Implemented with the Virtual Pixel Maps Tech-
niques. JEEE Computer Graphics and Applications 9,
4 (1989), 43-55.

[14] Nadas, T. and Fournier, A. GRAPE: An Environment
to Build Display Processes. Computer Graphics 21, 4
(Proc. SIGGRAPH °87) (1987), 75-83.

[15] Nakamae, E., Ishizaki, T., Nishita, T., and Takita, S.
Compositing 3D Images with Antialiasing and Various
Shading Eftects. IEEE Computer Graphics and Appli-
cations 9, 2 (1989), 21-29.

[16] Newman, W. M. and Sproull, R. F. Principles of In-
teractive Computer Graphics, 2nd Ed., McGraw-Hill,
1979.

[17] Perlin, K. An Image Synthesizer. Computer Graphics
19, 3 (Proc. SIGGRAPH ’85) (1985), 287-296.

[18] Porter, T. and Duff, T. Compositing Digital Images.
Computer Graphics 18, 3 (Proc. SIGGRAPH ’84)
(1984), 253-259.

[19] Rosenfeld, A. and Kak, A. C. Digital Picture Process-
ing, 2nd Ed., Academic Press, 1982.

[20] Saito, T., Shinya, M., and Takahashi, T. Highlighting
Rounded Edges. In New Advances in Computer Graph-
ics (Proc. CG International '89) (1989), 613-629.

[21] Udupa, J. K. Display of Medical Objects and their
Interactive Manipulation. In Proc. Graphics Interface
’89, (1989), 40-46.

[22] Whitted, T. and Weimer, D, M. A Software Testbed

for the Development of 3D Raster Graphics Systems.
ACM Trans. Graphics 1, 1 (1982), 43-58.

