Due: Wed, November 22

Suggested reading (for lectures 11-15): Sipser Chapters 6 and 7. Handout 2 on Gödel's Theorem.

Problems (from lectures upto Nov. 13)

1. Show that no infinite subset of $M I N_{T M}$ is recognizable.
2. The axiomatic system given in class has a finite number of axioms and derivation rules. Argue briefly that Gödel's Theorem also holds for any alternative system whose axioms and derivation rules are enumerable.
3. A 2CNF formula is an AND of clauses, where each clause is an OR of at most two literals. Let $2 \mathrm{SAT}=\{\varphi: \varphi$ is a satisfiable 2 CNF formula $\}$. Show that $2 \mathrm{SAT} \in \mathrm{P}$.
4. Point out the fallacy in the following proof that the language
$\overline{C L I Q U E}=\{<G, k>$: every clique in graph G has size less than $k\}$ is in NP.
In class we saw that CLIQUE is in NP. Just take that NDTM and swap its accept and reject states.
5. Suppose $\mathrm{P}=\mathrm{NP}$. Show that then we can do the following in polynomial time (be very careful, since the problems listed below are not decision problems!). (i) Given a boolean formula, find a satisfying assignment for it (if one exists). (ii) Given a graph and a number k, find a clique of size k in the graph (if one exists). (iii) Given $\left(<T>1^{n}\right)$, where T is a number-theoretic statement, find a proof of T in Peano Arithmetic of size n (if one exists) ${ }^{1}$.
6. For each of the following languages, state whether it is one or more of the following: in P, in NP, NP-complete, NP-hard. If you can't classify some language in any of these four categories, mention if you think that the exact classification is an open problem. Justify your answer in each case.
(i) $A_{T M}=\{\langle M, w\rangle: M$ is a deterministic TM that accepts $w\}$.
(ii) $\{\langle M, w, k\rangle: M$ is an NDTM that accepts w in time $k\}$.
(iii) $\left\{\left\langle M, w, 1^{k}\right\rangle: M\right.$ is an NDTM that accepts w in time $\left.k\right\}$.

[^0]7. (Just when you thought you would never see calculus ever again...) Show that the following problem is NP-complete. Given integers $a_{1}, a_{2}, \ldots, a_{n}$, to decide if
$$
\int_{0}^{2 \pi}\left(\prod_{i=1}^{n} \cos a_{i} \theta\right) d \theta \neq 0
$$
(Hint: Generalize the formula $\cos A \cos B=(\cos (A+B)+\cos (A-B)) / 2$ and do a reduction from PARTITION.)
8. (Extra credit) Describe an algorithm and some $c<1$ such that the algorithm can decide satisfiability for 3CNF formulae on n variables in $2^{c n}$ time.

[^0]: ${ }^{1}$ In other words, if $\mathrm{P}=$ NP mathematical proofs can be mechanically discovered in time that is polynomial in the number of symbols in the proof. Ergo, mathematicians had better hope that $\mathrm{P} \neq \mathrm{NP}$.

