Suggested reading (for lectures $7,8,9,10,11$): Sipser Chapters 3, 4, 5. Section 5.2 was not covered in class but should be perused.

Problems (from lectures 7, 8, 9, 10,11):

1. Give the transition diagram of a Turing Machine that accepts $\left\{w w^{R}: w \in\{0,1\}^{*}\right\}$.
2. Let the set of languages over the alphabet $\{0,1\}$ be divided into the following classes. Class,, Regular. Class,, Context-free but not Regular. Class,, Decidable but not Context-free. Class,, Recognizable but not Decidable. Class,, Not Recognizable.
If x is an integer, then let $[x]_{2}$ denote its binary representation. Classify each of the following languages and give a brief (1-2 lines) reason.
(i) $\left\{[n]_{2}: n \geq 0\right\}$.
(ii) $\left\{\left[2^{n}\right]_{2}: n \geq 0\right\}$.
(iii) $\left\{\left[2^{p}\right]_{2}: p\right.$ is a prime number $\}$.
(iv) $\left\{\left[2^{2 n}+2^{n}\right]_{2}: n \geq 0\right\}$.
(v) $\left\{[n]_{2}: M\right.$ accepts some string of length $\left.\geq n\right\}$, where M is a Turing Machine.
3. Is the following language decidable? Prove your answer.

$$
\{<G>: G \text { is a CFG that generates some string of even length }\}
$$

4. Give short proofs of the following facts about mapping reducibility $\left(\leq_{m}\right)$. For any languages A, B, C : (a) $A \leq_{m} A$. (b) If $A \leq_{m} B$ and $B \leq_{\underline{m}} C$ then $A \leq_{m} C$. (c) If $A \leq_{m} B$ then $\bar{A} \leq_{m} \bar{B}$. (d) If A is enumerable and $A \leq_{m} \bar{A}$ then A is decidable. (e) If A is decidable then $A \leq_{m} 0^{*} 1^{*}$. (f) If A is enumerable then $A \leq_{m} K_{T M}$
5. If u, v are binary strings, we say that $u<v$ if $1 u$ represents a smaller integer than $1 v$. Show that a language L is decidable iff the strings in L can be enumerated in an increasing order.
6. Let B be an infinite Turing-recognizable language consisting of descriptions of Turing machines $\left.\left.\left.\left\{<M_{1}\right\rangle,<M_{2}\right\rangle,<M_{3}\right\rangle, \ldots\right\}$. Show that there is a decidable language C consisting of Turing machines such that every machine in C has an equivalent Turing machine in B and vice versa. (Two Turing machines are equivalent if they have the same output on every input.)
7. In this question we explore the notion of oracle reducibility. If A is a language, then a Turing machine with oracle A is a machine with a "magical" subroutine that can decide membership in A. In other words, the subroutine, when given a string w, tells the machine whether or not $w \in A$. Show that there is a Turing machine with oracle $H A L T_{T M}$ that can solve the following problem with two questions to its oracle: Given any three (machine, input) pairs ($\left.\left.\left.<M_{1}, x_{1}\right\rangle,<M_{2}, x_{2}\right\rangle,<M_{3}, x_{3}\right\rangle$), decide for each pair whether or not it is in $H A L T_{T M}$.
8. (a) Show that \Re the set of real numbers, has the same size as $2^{\mathbf{N}}$, the power-set of the set of natural numbers. (ii) Show that $\Re \times \Re$, the set of all pairs of real numbers, has the same size as \Re. (Aside, Can you think of a set whose size lies in between those of \mathbf{N} and $2^{\mathbf{N}}$, This question has stumped mathematicians for many decades,)
