COS 487: Theory of Computation

Assignment #2

Due: Monday, October 16

Sanjeev Arora

Fall 2000

Suggested reading (for lectures 4,5,6): Sipser Chapter 2.

Note: For all problems except Problem 1, it is OK to describe a PDA in English (possibly with some pictures thrown in).

Problems (from lectures 4, 5, 6):

- 1. Show that the language $\{0^m 1^n : m \le n \le 2m\}$ is context-free by giving a PDA that accepts it. Indicate in words why your construction works.
- 2. Problem 2.17 in the text.
- 3. Let $G = (V, \Sigma, P, < \text{stmt} >)$ be the following grammar:

< stmt >	\rightarrow	$< {\rm assignment} > < {\rm if-then} > < {\rm if-then-else} > $
		< begin-end $>$
< if-then $>$	\rightarrow	if condition then $< \text{stmt} >$
< if-then-else $>$	\rightarrow	if condition then $< stmt > else < stmt >$
< begin-end $>$	\rightarrow	$\mathbf{begin} \ < \mathrm{stmt-list} > \ \mathbf{end}$
< stmt-list >	\rightarrow	< stmt-list > < stmt >
< assignment >	\rightarrow	$\mathbf{a} = 1$

 $\Sigma = \{ if, condition, then, else, begin, end, a = 1 \}.$

 $V = \{ < \text{stmt} >, < \text{assignment} >, < \text{if-then} >, < \text{if-then-else} >, < \text{begin-end} >, < \text{stmt-list} > \}.$

G is a natural-looking grammar for a fragment of a programming language.

- **a** Show that G is ambiguous.
- **b** Give a new unambiguous grammar for the same language.
- c Let symbols like if, then etc. be assigned their usual meanings. Re-state (in words) your modification in part (b) with respect to this meaning. (Note: Compiler designers have to worry about such semantic effects —sometimes unintended— of the way they define a CFG.)
- 4. Let $\Sigma = \{0, 1, \sharp\}.$

a Show that $\{x \sharp y : x, y \in \{0, 1\}^*, x \neq y\}$ is context free.

b Show that $\{x \ddagger y : x, y \in \{0, 1\}^*, x = y\}$ is not context-free.

- **c** Using parts (a) and (b), argue (carefully!) that the set of context-free languages is not closed under complementation.
- 5. Let $\Sigma = \{0, 1, \sharp\}.$
 - **a** Show that $\left\{ w \sharp w^R \sharp w : w \in \{0,1\}^* \right\}$ is not context-free.
 - **b** Express the language in part (a) as $A \cap B$, where A and B are context-free. Note that you have shown that the set of CFL's is not closed under intersection.
- 6. Let $G = (V, \Sigma, S, R)$ be a context-free grammar in Chomsky Normal Form. We define a directed graph whose set of vertices is V (the set of variables) and whose set of edges is

 $\{(A, B) : A, B \in V \text{ and for some } C \in V, \text{ either } A \to BC \text{ or } A \to CB \text{ is in } R\}.$

We say that this graph is *acyclic* if it has no (directed) cycle (and no self-loops either). Show that if this graph is acyclic then grammar G generates a regular language.

7. (*Optional*) Show that the context-free language $\{0^m 1^n 2^s : \text{either } m = n \text{ or } n = s\}$ is inherently ambiguous (i.e., every grammar for it is ambiguous).