Suggested reading (for lectures 1,2,3): Sipser Chapter 1.

A hint for this assignment: keep in mind the properties of regular languages. For instance, if you are trying to show that a language L is regular, it suffices to show that \bar{L} is accepted by a nondeterministic automaton.

Problems (from lectures 1, 2, 3):

1. (This is a practice problem; do not hand it in) Build a finite automaton that accepts language $L=\left\{x: x \in\{0,1\}^{*}\right.$ and is a multiple of 3$\}$. Also write a regular expresssion that describes L.
2. Let L be a regular language. Show that the language L^{\prime} is also regular, where

$$
L^{\prime}=\{x: \text { no } w \in L \text { is a substring of } x\} .
$$

3. Let L be a regular language. Show that the language $L_{\frac{1}{2}-}$ is also regular, where

$$
L_{\frac{1}{2}-}=\left\{w: \text { for some } z \in L, x \in\{0,1\}^{*}, z=w x \text { and }|w|=|x|\right\}
$$

4. Consider a new kind of finite automaton, an All-Paths-NFA. The automaton is is defined just like an NFA, except an input x is said to be accepted iff all the states that the NFA is in at the end are accept-states. Note, in contrast, that an ordinary NFA is said to accept the string iff at least one of the states it is in at the end is an accept-state. Prove that the class of languages accepted by All-Paths-NFA are exactly the regular languages.
5. Describe an algorithm that, given any two finite automata M_{1} and M_{2}, decides whether or not M_{1} and M_{2} accept the same language. (Note: you do not need to write pseudocode. A description in English will do.)
6. Show that the following language is not regular.

$$
L=\left\{0^{p}: p \text { is a prime }\right\} .
$$

7. In class we gave a way to convert DFA's into equivalent regular expressions. (a) Give a reasonable estimate of how large an expression this may generate from a DFA with n states. (You may, if you wish, ignore the symbols (,), *, and \cup in your answer.) (b) We also gave a way to convert regular expressions into NFA's. Give a reasonable estimate of how large an NFA this may generate from an expression with n symbols. Justify your answer.
