
COS 487: Theory of Computation Fall 2000

Assignment #1
Due: Monday, October 2 Sanjeev Arora

Suggested reading (for lectures 1,2,3): Sipser Chapter 1.

A hint for this assignment: keep in mind the properties of regular languages. For instance,
if you are trying to show that a language L is regular, it suffices to show that L is accepted
by a nondeterministic automaton.

Problems (from lectures 1, 2, 3):

1. (This is a practice problem; do not hand it in) Build a finite automaton that accepts
language L = {x : x ∈ {0, 1}∗ and is a multiple of 3}. Also write a regular expresssion
that describes L.

2. Let L be a regular language. Show that the language L′ is also regular, where

L′ = {x : no w ∈ L is a substring of x} .

3. Let L be a regular language. Show that the language L 1
2− is also regular, where

L 1
2− = {w : for some z ∈ L, x ∈ {0, 1}∗ , z = wx and |w| = |x|} .

4. Consider a new kind of finite automaton, an All-Paths-NFA. The automaton is is
defined just like an NFA, except an input x is said to be accepted iff all the states
that the NFA is in at the end are accept-states. Note, in contrast, that an ordinary
NFA is said to accept the string iff at least one of the states it is in at the end is an
accept-state. Prove that the class of languages accepted by All-Paths-NFA are exactly
the regular languages.

5. Describe an algorithm that, given any two finite automataM1 andM2, decides whether
or not M1 and M2 accept the same language. (Note: you do not need to write pseudo-
code. A description in English will do.)

6. Show that the following language is not regular.

L = {0p : p is a prime} .

7. In class we gave a way to convert DFA’s into equivalent regular expressions. (a) Give
a reasonable estimate of how large an expression this may generate from a DFA with
n states. (You may, if you wish, ignore the symbols (,), ∗, and ∪ in your answer.)
(b) We also gave a way to convert regular expressions into NFA’s. Give a reasonable
estimate of how large an NFA this may generate from an expression with n symbols.
Justify your answer.

HW1-1

