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5.1 Some hard number theoretic problems

1. Let p be a prime, and g be an integer that is a generator for p, which means that
for every number y that is not divisible by p, there is a t ∈ {1, . . . , p − 1} such that
y ≡ gt(modp). Then t is called the discrete logarithm of y with respect to g. Finding
this for a randomly chosen y seems hard.

2. Let n = pq where p, q are primes and p, q ≡ 3(mod4).

(a) For every integer a, the number a2 has four “square roots” modulo n. Two are
a, n − a and the other two are obtained by the use of chinese remainder theorem.
If somebody randomly picks a and gives us a2(modn) then finding a square root
is as hard as factoring n. Reason: If we have an algorithm then we can factor n
by giving it a2(modn) for a random a. The algorithm does not know what a is;
it just finds some square root r. With probability at least 1/2 this square root is
neither a nor n − a. In that case r2 ≡ a2(modn), i.e., (r + a)(r − a) ≡ 0(modn),
and neither r + a ≡ 0(modn) nor r − a ≡ 0(modn). Hence exactly one of p, q
must divide r + a and so we can extract it by computing the greatest common
divisor of r + a and n.

(b) If e is a number that is coprime to (p − 1)(q − 1) then for a random chosen x
it seems hard to find x given xe(modn). This is the famous RSA encryption
function. We can easily find an integer n whose factorization we know, and
take a random e and publish e it as our public key. Then since we know the
factorization of n we know (p−1)(q−1) and so we can find an integer d such that
de ≡ 1(mod(p − 1)(q − 1)). This will be our private key. Anybody who wishes
to send us an encrypted message can break up the message into chunks of �log n�
bits —namely, numbers mod n— and send each raised to power e. Eavesdroppers
who do not know the factorization of n will have a hard time decrypting. We can
decrypt by raising the received message to the power d. This is a valid decryption
since xde ≡ x(modn), as is checked by noticing that x(p−1)(q−1) ≡ 1.

5.2 Zero Knowledge proofs

Graph Nonisomorphism Input: Pair of graphs (G1, G2).
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The verifier randomly picks one of the two graphs, and randomly permutes its vertices to
get a graph H. It asks the prover to identify which of the two graphs is isomorphic to H. If
the prover identifies correctly, the verifier accepts.

The prover is all-powerful, but does not know what random bits were used by the verifier
to produce H. All he sees is a random-looking graph. However, if G1, G2 are indeed noniso-
morphic, H is isomorphic to only one of them and the prover can detect which one (using
his huge computational power). Thus he can make the verifier accept. Suppose on the other
hand that G1, G2 are isomorphic. The prover has only a 1/2 chance of guessing which one
the verifier had in mind, and hence has only a 1/2 chance of making the verifier accept.

Why is this zero knowledge? Intuitively, the verifier does not learn anything new during
the protocol, except some confidence that the graphs are indeed nonisomorphic. We can
formalize this by showing that if the graphs are indeed nonisomorphic, the transcript of the
protocol can be generated by a probabilistic polynomial time machine. (This shows that
any “knowledge” acquired in the protocol is of no use since a probabilistic polynomial time
computation would also provide this knowledge.) Note that the machine can produce the
transcript in any order it likes, in particular, outputting the last step first. Think about it!

Square roots modulo n = pq In the description below all numbers are mod n. The input
is a2. The prover wishes to prove to the verifier in a zero-knowledge way that he knows a.
The prover picks a random number r mod n and sends the verifier r2. The verifier picks a
random bit b and sends it to the prover. If b is 0 the prover has to provide r; the verifier
checks that its square is the number r2 provided earlier and if so it accepts. If b is 1 the
prover has to provide ra; the verifier squares this and checks that the square is r2a2 which
it knows from before.

Again, a simulation argument shows that the protocol is zeroknowledge and the verifier
does not learn anything. We show that a probabilistic polynomial time simulator generates
“transcripts” of the protocol. First pick a random number x. Then pick the verifier’s random
bit b. If b is 0, then use x as r in the protocol. If b = 1 then use x as ra. In other words,
put x2/a2 as r2 in the protocol and then fills in the rest of the transcript.

This protocol is different from the graph nonisomorphism protocol in that the prover does
not need to be all-powerful; it can run in polynomial time if it knows a. Thus this protocol
can be used in password authentication for rlogins. Each user is provided with a random a
as his password. He can identify himself by revealing a2 and then proving in zero knowledge
that he holds a. A polynomial-time eavesdropper will not learn anything about a. Note that
this is a stronger guarantee than standard encryption, where the eavesdropper could learn
something about a. This and related protocols are widely used these days.


