
Microsoft v6.9

AA PPiixxeell IIss NNoott AA LLiittttllee SSqquuaarree,,
AA PPiixxeell IIss NNoott AA LLiittttllee SSqquuaarree,,
AA PPiixxeell IIss NNoott AA LLiittttllee SSqquuaarree!!
((AAnndd aa VVooxxeell iiss NNoott aa LLiittttllee CCuubbee))1

Technical Memo 6

Alvy Ray Smith
July 17, 1995

Abstract
My purpose here is to, once and for all, rid the world of the misconception

that a pixel is a little geometric square. This is not a religious issue. This is an is-
sue that strikes right at the root of correct image (sprite) computing and the abil-
ity to correctly integrate (converge) the discrete and the continuous. The little
square model is simply incorrect. It harms. It gets in the way. If you find yourself
thinking that a pixel is a little square, please read this paper. I will have suc-
ceeded if you at least understand that you are using the model and why it is
permissible in your case to do so (is it?).

Everything I say about little squares and pixels in the 2D case applies equally
well to little cubes and voxels in 3D. The generalization is straightforward, so I
won’t mention it from hereon1.

I discuss why the little square model continues to dominate our collective
minds. I show why it is wrong in general. I show when it is appropriate to use a
little square in the context of a pixel. I propose a discrete to continuous map-
ping—because this is where the problem arises—that always works and does not
assume too much.

I presented some of this argument in Tech Memo 5 ([Smith95]) but have en-
countered a serious enough misuse of the little square model since I wrote that
paper to make me believe a full frontal attack is necessary.

The Little Square Model
The little square model pretends to represents a pixel (picture element) as a

geometric square2. Thus pixel (i, j) is assumed to correspond to the area of the
plane bounded by the square {(x, y) | i-.5 ≤ x ≤ i+.5, j-.5 ≤ y ≤ j+.5}.

1 Added November 11, 1996, after attending the Visible Human Project Conference 96 in Be-
thesda, MD.
2 In general, a little rectangle, but I will normalize to the little square here. The little rectangle
model is the same mistake.

A Pixel Is Not a Little Square!

Microsoft Tech Memo 6 Alvy

2

I have already, with this simple definition, entered the territory of contro-
versy—a misguided (or at least irrelevant) controversy as I will attempt to show.
There is typically an argument about whether the pixel “center” lies on the inte-
gers or the half-integers. The “half-integerists” would have pixel (i, j) correspond
instead to the area of the plane {(x, y) | i ≤ x ≤ i+1., j ≤ y ≤ j+1.}.

This model is hidden sometimes under terminology such as the following—
the case that prompted this memo, in fact: The resolution-independent coordi-
nate system for an image is {(x, y) | 0. ≤ x ≤ W/H, 0 .≤ y ≤ 1.}, W and H are the
width and height of the image. The resolution dependent coordinate system
places the edges of the pixels on the integers, their centers on the edges plus one
half, the upper left corner on (0., 0.), the upper right on (W., 0.), and the lower left
on (0., H). See the little squares? They would have edges and centers by this for-
mulation.

So What Is a Pixel?
A pixel is a point sample. It exists only at a point. For a color picture, a pixel

might actually contain three samples, one for each primary color contributing to
the picture at the sampling point. We can still think of this as a point sample of a
color. But we cannot think of a pixel as a square—or anything other than a point.
There are cases where the contributions to a pixel can be modeled, in a low-order
way, by a little square, but not ever the pixel itself.

An image is a rectilinear array of point samples (pixels). The marvelous
Sampling Theorem tells us that we can reconstruct a continuous entity from such
a discrete entity using an appropriate reconstruction filter3. Figure 1 illustrates
how an image is reconstructed with a reconstruction filter into a continuous en-
tity. The filter used here could be, for example, a truncated Gaussian. To sim-
plify this image, I use only the footprint of the filter and of the reconstructed pic-
ture. The footprint is the area under the non-0 parts of the filter or picture. It is
often convenient to draw the minimal enclosing rectangle for footprints. They are
simply easier to draw than the footprint—Figure 1(d). I have drawn the minimal
rectangles as dotted rectangles in Figure 1.

3 And some assumptions about smoothness that we do not need to worry about here.

A Pixel Is Not a Little Square!

Microsoft Tech Memo 6 Alvy

3

(a) A 5x4 image.

(b) The footprint of a reconstruction filter.
A truncated Gaussian, for example.

(c) Footprint of image under reconstruction.

(d) Footprint of reconstructed image.
Medium quality reconstruction. (e) Reconstruction translated (.5,.5),

then resampled into a 6x5 image.

FIGURE 1

Dotted line is minimally enclosing rectangle

Fixed reference point

A Pixel Is Not a Little Square!

Microsoft Tech Memo 6 Alvy

4

(a) A 5x4 image.

(b) The footprint of a reconstruction filter.
A cubic, or windowed sinc, for example.

(c) Footprint of reconstructed image.
Typical high quality reconstruction.

Would be resampled into 7x6 image.

FIGURE 2

Dotted line is minimally enclosing rectangle

Fixed reference point

Figure 2 is the same image reconstructed with a better reconstruction filter—

eg, a cubic filter or a windowed sinc function—and not an unusual one at all.
Most quality imaging uses filters of this variety. The important point is that both
of these figures illustrate valid image computations. In neither case is the foot-
print rectangular. In neither case is the pixel ever approximated by a little square.
If a shape were to be associated with a pixel (and I am not arguing that it should),
then the most natural thing would be the shape of the footprint of the reconstruc-
tion filter. As these two examples show, the filters typically overlap a great deal.

A Pixel Is Not a Little Square!

Microsoft Tech Memo 6 Alvy

5

(a) A 5x4 image.

(b) The footprint of a reconstruction filter.
A simple box filter, for example.

(c) Footprint of reconstructed image.
The worst case: low quality reconstruction.

FIGURE 3

Fixed reference point

Figure 3 is the same image reconstructed with one of the poorest reconstruc-

tion filters—a box filter. The only thing poorer is no reconstruction at all—
resulting in the abominable “jaggies” of the early days of computer graphics—
and we will not even further consider this possibility. The Figure 3 reconstruc-
tion too is a valid image computation, even though it is lacking in quality. This
lowest-quality case is the only one that suggests the little square model.

So it should be clear that the coordinate system definition given above is not
suitable for anything but the lowest-quality image computing. The edges of a re-
constructed image are most naturally defined to be its minimally enclosing rec-
tangle. But these are dependent on the chosen reconstruction filter.

The only resolution independent coordinate system that one can safely map
to an image requires a known reconstruction filter. Given an image, say that rep-
resented by Figure 2(a), and a known filter, say that of Figure 2(b), then I can de-
termine exactly what the minimally enclosing rectangle is and map this to the
normalized rectangle of the proposed definition above: {(x, y) | 0. ≤ x ≤ W/H, 0 .≤
y ≤ 1.}. Then the pixel (point sample, remember) locations can be backed out of
the mapping. Will they sit on the half-integers? In the three cases above, all of
which are valid, only Figure 3 (the worst) will have the samples on the half-

A Pixel Is Not a Little Square!

Microsoft Tech Memo 6 Alvy

6

integers under this mapping. Will the left edge of the reconstructed image lie dis-
tance .5 left of the leftmost column of pixels? Again, only in the worst case, Fig-
ure 3.

I would suggest at this point that the only thing that is fixed, in general, are
the samples. Doesn’t it make sense that they be mapped to the integers since that
is so simple to do? Then the edges of the reconstructed continuum float depend-
ing on the chosen filter. I believe that if you rid yourself of the little square
model, it does not even occur to you to put the samples on the half-integers, an
awkward position for all but the lowly box filter. The bicubic filter that I most
often use has a footprint like the minimal enclosing rectangle of Figure 2(b). Half-
integer locations for this filter are simply awkward. Certainly one can do it, but
why the extra work?

I believe that the half-integer locations are attractive for “little-squarists” be-
cause the minpoint (upper left corner) of the reconstructed entity falls at (0, 0).
But note that this only happens for—yes, again—the box filter. For my favorite
filter, the minpoint would fall at (-1.5, -1.5). Is that more convenient, prettier, or
faster than (-2., -2.)? No.

Why Is the Little square Model So Persistent?
I believe there are two principal reasons that the little square model hasn’t

simply gone away:
• Geometry-based computer graphics uses it.
• Video magnification of computer displays appears to show it.

Geometry-based computer graphics (3D synthesis, CGI, etc.) has solved
some very difficult problems over the last two decades by assuming that the
world they model could be divided into little squares. Rendering is the process of
converting abstract geometry into viewable pixels that can be displayed on a
computer screen or written to film or video for display. A modern computer
graphics model can have millions of polygons contributing to a single image.
How are all these millions of geometric things to be resolved into a regular array
of pixels for display? Answer: Simplify the problem by assuming the rectangular
viewport on the model is divided regularly into little squares, one per final pixel.
Solve the often-intense hidden surface problem presented by this little square
part of the viewport. Average the results into a color sample. This is, of course,
exactly box filtering. And it works, even though it is low order filtering. We
probably wouldn’t be where we are today in computer graphics without this
simplifying assumption. But, this is no reason to identify the model of geometric
contributions to a pixel with the pixel. I often meet extremely intelligent and ac-
complished geometry-based computer graphicists who have leapt to the identifi-
cation of the little square simplification with the pixel. This is not a plea for them
to desist from use of the little square model. It is a plea for them to be aware of
the simplification involved and to understand that the other half of computer

A Pixel Is Not a Little Square!

Microsoft Tech Memo 6 Alvy

7

picturing—the half that uses no geometry at all, the imaging half—tries to avoid
this very simplification for quality reasons.

When one “magnifies” or “zooms in on” an image in most popular applica-
tions, each pixel appears to be a little square. The higher the magnification or the
closer in the zoom, the bigger the little squares get. Since I am apparently magni-
fying the pixel, it must be a little square, right? No, this is a false perception.
What is happening when you zoom in is this: Each point sample is being repli-
cated MxM times, for magnification factor M. When you look at an image con-
sisting of MxM pixels all of the same color, guess what you see: A square of that
solid color! It is not an accurate picture of the pixel below. It is a bunch of pixels
approximating what you would see if a reconstruction with a box filter were per-
formed. To do a true zoom requires a resampling operation and is much slower
than a video card can comfortably support in realtime today. So the plea here is
to please disregard the squareness of zoomed in “pixels”. You are really seeing
an MxM array of point samples, not a single point sample rendered large.

How Does a Scanner Digitize a Picture?
Just to be sure that I eradicate the notion of little square everywhere, let’s

look at the scanning process. I want to be sure that nobody thinks that scanners
work with little squares and that, therefore, it is all right to use the model.

A scanner works like this: A light source illuminates a piece of paper con-
taining a colored picture. Light reflected from the paper is collected and meas-
ured by color sensitive devices. Is the picture on the paper divided up into little
squares, each of which is measured and converted to a single pixel? Not at all. In
fact, this would be very hard to accomplish physically. What happens instead is
that the illuminating light source has a shape or the receiving device has an aper-
ture that gives the incoming light a shape or both, and the device integrates
across this shape. The shape is never a square. It is not necessarily accurate, but
will give you the correct flavor, to think of the shape as a Gaussian. In general,
overlapping shapes are averaged to get neighboring pixel samples.

So scanning should not contribute any weight to the little square model.

How Does a Printer Print a Digital Image?
Again, let’s look at a familiar process to determine if it contributes to the little

square model. The process this time is printing. This is a very large and complex
subject, because there are many different ways to print an image to a medium.

Consider printing to film first. There are several ways to do this. In any proc-
ess where a flying spot of light is used to expose the film, then the exposing beam
has a shape—think of it as Gaussian. There are no little squares in this process.

Consider half-tone printing of ink on paper. The concept here is to convert a
pixel with many values to a dot of opaque ink on paper such that the area of the
dot relative to a little square of paper occupied by the dot is in the ratio of the in-
tensity of the pixel to the maximum possible intensity. Sounds like the little
square model, doesn’t it? But for color printing, the different primaries are

A Pixel Is Not a Little Square!

Microsoft Tech Memo 6 Alvy

8

printed at an angle to each other so that they can “show through” one another.
Therefore, although there are little squares in each color separation, there are
none for the final result.

There is a new technique for printing ink-on-paper that uses stochastic pat-
terns within each little square. Hence the separations do not have to be rotated
relative one another in order to “show through”. The little square model is a de-
cent model in this case.

There are sublimation dye printers and relatives now that print “continuous
tone” images in ink on paper. I believe that these use little squares of transparent
dyes to achieve continuous tone. In that case, they probably use the little square
model.

The point here is that the use of the little square is a printing technology de-
cision, not something inherent in the model of the image being imaged. In fact,
the image being imaged is simply an array of point samples in all cases.

How Is an Image Displayed on a Monitor?
Many people are aware that a color monitor often has little triads of dots that

cause the perception of color at normal viewing distances. This is often true, ex-
cept for Sony Trinitrons that use little strips of rectangles rather than triads of
dots. In neither case are there little squares on the display. I will assume triads
for this discussion. It goes through for the Trinitron pattern too, however.

While we are at it, I would also like to dispel any notion that the triads are
pixels. There is no fixed mapping between triads and pixels driving them. The
easiest way to understand this is to consider your own graphics card. Most mod-
ern cards support a variety of different color resolutions—eg, 640x480, 800x600,
1024x768, etc. The number of triads on your display screen do not change as you
change the number of pixels driving them.

Now back to the display of pixels on a screen. Here’s roughly what happens.
The value of a pixel is converted, for each primary color, to a voltage level. This
stepped voltage is passed through electronics which, by its very nature, rounds
off the edges of the level steps. The shaped voltage modulates an electron beam
that is being deflected in raster fashion across the face of your display. This beam
has shape—again think of it as Gaussian (although it can get highly distorted
toward the edges of the display). The shaped beam passes through a shadow
mask that ensures that only the red gun will illuminate the red phosphors and so
forth. Then the appropriate phosphors are excited and they emit patterns of light.
Your eye then integrates the light pattern from a group of triads into a color. This
is a complex process that I have presented only sketchily. But I think it is obvious
that there are no little squares involved at any step of the process. There are, as
usual in imaging, overlapping shapes that serve as natural reconstruction filters.

Another display issue that implies the little square model is the notion of
displays with “non-square pixels”. Although it is becoming less common now, it
used to be fairly common to have a video display driven by, say, a 512x480 im-

A Pixel Is Not a Little Square!

Microsoft Tech Memo 6 Alvy

9

age memory. This means that 512 samples are used to write a row to the display,
and there are 480 rows. Video monitors have, if correctly adjusted, a 4:3 aspect
ratio. So the pixel spacing ratio (PSR) for this case is 1.25 = (4/3)/512:1/480 =
(4/3)*(480/512). So the correct terminology for this case is that the monitor has a
“non-square pixel spacing ratio”, not that it has “non-square pixels”. Most mod-
ern computer displays, if correctly adjusted, have square PSR—ie, PSR = 1.

So we have no contributions from scanning or display processes for the little
square model. We have a case or two for particular printing technologies that
support a little square model, but they are not the general printing case. In sum-
mary, the processes used for image input and output are not sources for the little
square model.

What Is a Discrete to Continuous Mapping That Works?
The only mapping that I have been able to come up with that doesn't assume

too much is this: Assume the samples are mapped to the integers (it's so easy af-
ter all—just an offset to the array indices used to address them in an image com-
putation). Then the outer extremes of the image are bounded by a rectangle
whose left edge is (filterwidth/2) to the left of the leftmost column of integers,
right edge is (filterwidth/2) to the right of the rightmost column of integers, top
edge is (filterheight/2) above the topmost row of integers, and bottom edge is
(filterheight/2) below the bottommost row of integers occupied by image sam-
ples).

This is still not quite complete, because it assumes symmetric filters. There
are cases—for example, perspective transformations on (reconstructions of) im-
ages—when asymmetric filters are useful. So the mapping must be generalized
to handle them. By the way, by symmetrical filter I mean that it is symmetrical
about its horizontal axis, and it is symmetrical about its vertical axis. I do not
mean that it is necessarily the same in both dimensions.

I do believe that it is important to have the vertical dimension increase
downward. It is not required, but it is so natural that I find it hard to argue
against. We display from top to bottom on millions of TVs and computer dis-
plays. We read from top to bottom. We compute on matrices—the natural con-
tainer for images—from top to bottom. Nearly all popular image file formats
store images from top to bottom4, or if in tiled form, in rows of tiles from top to
bottom.

Image Broadening
I mentioned earlier that I would return to a discussion of whether the mini-

mal enclosing rectangle of a reconstructed image were the most natural represen-
tation of it. This will fall out of a discussion of image broadening.

4 The Targa file format is the most flagrant violator of this rule; it also reverses RGB to BGR. And
Windows has adapted the Targa format for its “bitmaps” (without documenting the color chan-
nel reversal, as I unhappily discovered as a developer).

A Pixel Is Not a Little Square!

Microsoft Tech Memo 6 Alvy

10

By the very nature of the Sampling Theorem that underlies everything that
we do, during a reconstruction an image suffers broadening due to the width of
the reconstruction filter. Again, look at Figures 1-3 for examples. The amount of
broadening is dependent on the filter used. If the filter is asymmetric, then so is
the broadening.

I call the excess of a broadened image over itself to be its margin. In general
then, an image margin is not symmetric about its image and is dependent on the
reconstruction filter being used.

Let’s be concrete: Consider scaling 640x480 image down by a factor of 2 in
both dimensions. The original image is assumed to have its minpoint at (0,0) and
its maxpoint (lower right corner) at (639, 479). Assume we are using a symmetric
bicubic filter for good results. Its canonical footprint is {(x, y) | -2. ≤ x ≤ 2., -2. ≤ y
≤ 2.}. Then to do the scaling we reconstruct-transform-resample5: When we re-
construct our image into a continuum, it occupies the space from -2. to 641. hori-
zontally and from -2. to 481. vertically. Thus its minimal enclosing rectangle has
minpoint (-2., -2.) and maxpoint (641., 481.). If we were to resample at this mo-
ment, before doing any transform on the reconstruction, we would have broad-
ened the image by one pixel all around; we would have introduced a 1-pixel
margin by the act of reconstruction. (The filter has 0 weight at its extremes so the
samples along the minimal enclosing rectangle would be 0 and not figure into
the support of the sampled image.)

This is a good point to pause and note that it is not necessarily the broadened
footprint that is interesting. In this case, if we have only a 640x480 display then
we would crop off the margin pixels for redisplay anyway. In my experience, I
usually want to know about an image’s extent and its margins, before and after
transformations, in full detail so that I can decide exactly what I want to do. The
important point is that this information be available, not how.

Back to the scaling example: Now let’s minify the reconstruction by 2. This
means that the reconstruction is scaled down about its center. This is easily mod-
eled by scaling down the minimal enclosing rectangle that I will represent as (-2.,
-2.)→(641., 481.). The scaling happens about the center at (319.5, 239.5). There are
many ways to proceed from here so I will not pursue the details. I believe that I
have presented enough of the problem and technique of solution that it is clear
that nothing is offered to it by a little square model for the pixels.

In fact, the little square model might have misled us into a compounding of
low quality techniques: It is tempting to box filter box filters. Thus it is tempting
to take the 640x480 example above and look at each set of 2x2 pixels to scale
down by 2. It is another application of the box filter to simply average each 2x2

5 Generally, there needs to be a low-pass filtering step too, before resampling. When scaling up,
no high frequencies are introduced, but when scaling down, they are and must be low-pass fil-
tered to satisfy the Sampling Theorem.

A Pixel Is Not a Little Square!

Microsoft Tech Memo 6 Alvy

11

set of pixels into a single new pixel. This is generally a bad idea and not the path
to take for good results.

Summary
I have presented a brief but inclusive analysis of sampling and filtering. It

has been shown that the little square model does not arise naturally in sampling
theory, the main underpinning of everything we do. It does not arise in scanning
or display. It arises in printing only in restricted cases. The geometry world uses
it a great deal because they have had to simplify in order to accomplish. Their
simplified model of contributions to a pixel should not be confused with or identi-
fied with the pixel. Magnified screen pixels that look like little squares have been
shown to be a quick and dirty trick (pixel replication) by graphics boards design-
ers, but not the truth. In short, the little square model should be suspect when-
ever it is encountered. It should be used with great care, if at all, and certainly
not offered to the world as “standard” in image computing.

In the process of this presentation, I have demonstrated at least one very
natural mapping of the discrete samples of an image to a continuum recon-
structed from it. The method used is straightforward and always works. I have
also argued that the following details of such a reconstruction are interesting
enough to track: the exact filter used, the image margins created by reconstruc-
tion, and minimal enclosing rectangles. I have also suggested that it is natural for
the vertical coordinate to increase downwards, and that it is simple and natural
for sample locations to be mapped to the integers. However, neither of these is
required, so long as consistency reigns. I do argue, however, that placing sam-
ples at the half-integers seems to indicate a lurking reluctance to dismiss the little
square model, or the box filter, the only two common situations where the half-
integers are natural concepts.

Finally, I have pointed out two related misconceptions: (1) The triads on a
display screen are not pixels; they do not even map one-to-one to pixels. (2) Peo-
ple who refer to displays with non-square pixels should refer instead to non-
square, or non-uniform, pixel spacing.

References
[Smith95] Smith, Alvy Ray, A Sprite Theory of Image Computing, Tech

Memo 5, Microsoft, Jul 1995.

