|

Eﬁ‘%

Scan Conversion

& Shading

Thomas Funkhouser
Princeton University
CO0S 426, Fall 1999

[

3D Rendel’ing Pipeline (for direct illumination)

~

3D Primitives
4 3D Modeling Coordinates

Modeling,
Transformation
3D World Coordinates

Lighting

3D World Coordinates

Viewing
Transformation

3D Camera Coordinates

Pro#'ection.
Transformation

2D Screen Coordinates

Clipping
2D Screen Coordinates
Viewport
Transformation

2D Image Coordinates

Scan
Conversion

2D Image Coordinates

Image

P,

Scan Conversion
& Shading

-
Overview

Eﬁ‘%

o

« Scan conversion
o Figure out which pixels to fill

« Shading
o Determine a color for each filled pixel

-
Scan Conversion

Eﬁ‘%

o

* Render an image of a geometric primitive
by setting pixel colors

| void SetPixel (int x, int y, Color rgba) |

« Example: Filling the inside of a triangle

Py

-
Scan Conversion

Eﬁ‘%

o

* Render an image of a geometric primitive
by setting pixel colors

| void SetPixel (int x, int y, Color rgba) |

« Example: Filling the inside of a triangle

Py

=
Triangle Scan Conversion

mﬁ
L A

=
W

* Properties of a good algorithm
Symmetric

Straight edges

Antialiased edges

No cracks between adjacent primitives
MUST BE FAST!

[e]

[e]

[e]

[e]

[e]

-
Triangle Scan Conversion

Eﬁ‘%

o

» Properties of a good algorithm
o Symmetric
Straight edges
Antialiased edges
No cracks between adjacent primitives
MUST BE FAST!

[e]

[e]

[e]

[e]

Py

-
Simple Algorithm

Eﬁ‘%

o

» Color all pixels inside triangle

voi d ScanTriangl e(Triangle T, Color rgba)({
for each pixel P at (x,y){
if (Inside(T, P))
Set Pi xel (x, y, rgba);
}
}

-

Eﬁ‘%
ok

Inside Triangle Test

» A pointis inside a triangle if it is in the
positive halfspace of all three boundary lines
o Triangle vertices are ordered counter-clockwise
o Point must be on the left side of every boundary line

-

Eﬁ‘%
ok

Inside Triangle Test

Bool ean I nside(Triangle T, Point P)

for each boundary line L of T {
Scalar d = L.a*P.x + L.b*P.y + L.c;
if (d <0.0) return FALSE;

}
return TRUE;
} o

-

Eﬁ‘%
ok

Simple Algorithm

* What is bad about this algorithm?

voi d ScanTriangl e(Triangle T, Color rgba)({
for each pixel P at (x,y){
if (Inside(T, P))
Set Pi xel (x, vy, rgba);

}
}

-

N
Triangle Sweep-Line Algorithm

» Take advantage of spatial coherence
o Compute which pixels are inside using horizontal spans
o Process horizontal spans in scan-line order

» Take advantage of edge linearity
o Use edge slopes to update coordinates incrementally

dx

dy .

-

Triangle Sweep-Line Algorithm

Eﬁ‘%
ok

initialize x|,

void ScanTriangl e(Triangle T, Color rgba){
for each edge pair {

conpute dx,/dy, and dxy dygs
for each scanline at y
for (int x = X_; X <= Xg X++)
Set Pi xel (x, y, rgba);

X, += dx./dy;
Xg += dx4 dyg

dx,

dy, P - (1 dyg

-

Polygon Scan Conversion

Eﬁ‘%
ok

[e]

[e]

[e]

[e]

[e]

[e]

Quadrilateral
Convex
Star-shaped
Concave
Self-intersecting

« Fill pixels inside a polygon
o Triangle

4 DO

"F 4@

What problems do we encounter with arbitrary polygons?

J

=
Polygon Scan Conversion

* Need better test for points inside polygon
o Triangle method works only for convex polygons

Convex Polygon Concave Polygon
J
4)
Inside Polygon Rule

@

* What is a good rule for which pixels are inside?

Concave Self-Intersecting With Holes

f R
Inside Polygon Rule

* Odd-parity rule
o Any ray from P to infinity crosses odd number of edges

b 3 &

Concave Self-Intersecting With Holes

=
Polygon Sweep-Line Algorithm

* Incremental algorithm to find spans,
and determine insideness with odd parity rule
o Takes advantage of scanline coherence

A

£\
L

Triangle Polygon

-

Polygon Sweep-Line Algorithm

voi d ScanPol ygon(Triangle T, Color rgba){
sort edges by nmaxy
make enpty “active edge list”
for each scanline (top-to-bottom {
i nsert/renove edges from “active edge |ist”
update x coordi nate of every active edge
sort active edges by x coordinate

for each pair of active edges (left-to-right)

Set Pi xel s(x;, Xj,, Y, rgba);

}

-

Hardware Scan Conversion

|

Eﬁ‘%

« Convert everything into triangles
o Scan convert the triangles

10

-
Hardware Antialiasing

» Supersample pixels
o Multiple samples per pixel

o Average subpixel intensities (box filter)
o Trades intensity resolution for spatial resolution

Py

(
Overview

« Shading

o Determine a color for each filled pixel

Eﬁ‘%

o

Eﬁ‘%

o

[

Shading

S

:?
Lot Pt

~

* How do we choose a color for each filled pixel?

o Each illumination calculation for a ray from the eyepoint

through the view plane provides a radiance sample
» How do we choose where to place samples?
» How do we filter samples to reconstruct image?

Emphasis on methods that can
be implemented in hardware

Angel Figure 6.39

[

Ray Casting

S

:?
Lot Pt

~

» Simplest shading approach is to perform
independent lighting calculation for every pixel
o When is this unnecessary?

(o]

o

[o]

(o]

[o]

(o]

|
|

L

[e]
[e]

o

I = IE+KAIAL+Zi(KD(N. L)1,

+Ks(VeR)"))

12

(

Polygon Shading

Eﬁ‘%
ok
J

« Can take advantage of spatial coherence
o lllumination calculations for pixels covered by same

primitive are related to each other

o [e]

(

Polygon Shading Algorithms

» Flat Shading
* Gouraud Shading
« Phong Shading

13

-
Polygon Shading Algorithms

Eﬁ‘%
ok

» Flat Shading
» Gouraud Shading
« Phong Shading

-
Flat Shading

Eﬁ‘%
ok

* What if a faceted object is illuminated only by
directional light sources and is either diffuse or
viewed from infinitely far away

| :|E+KAIAL+Zi(KD(N. L)l +Ks(V e R)")

14

-
Flat Shading

Eﬁ‘%
ok

* One illumination calculation per polygon
o Assign all pixels inside each polygon the same color
4

-

-
Flat Shading

Eﬁ‘%
ok

* Objects look like they are composed of polygons
o OK for polyhedral objects
o Not so good for ones with smooth surfaces

15

=
Polygon Shading Algorithms

Eﬁ‘%
ok

* Flat Shading
e Gouraud Shading
* Phong Shading

=
Gouraud Shading

Eﬁ‘%
ok

* What if smooth surface is represented by
polygonal mesh with a normal at each vertex?

Wett Plate 7

| :|E+KAIAL+Zi(KD(N. L)l +Ks(V e R)")

16

-

Gouraud Shading

* Method 1: One lighting calculation per vertex

o Assign pixels inside polygon by interpolating colors
computed at vertices

Viewer

-

Gouraud Shading

 Bilinearly interpolate colors at vertices
down and across scan lines

17

-

Gouraud Shading

* Smooth shading over adjacent polygons
o Curved surfaces
o lllumination highlights
o Soft shadows

Mesh with shared normals at vertices

Watt Plate 7/

-

Gouraud Shading

* Produces smoothly shaded polygonal mesh
o Piecewise linear approximation
o Need fine mesh to capture subtle lighting effects

“u-hhr*

Flat Shading Gouraud Shading

18

-
Polygon Shading Algorithms

Eﬁ‘%
ok

» Flat Shading
* Gouraud Shading
 Phong Shading

-
Phong Shading

Eﬁ‘%
ok

« What if polygonal mesh is too coarse to capture
illumination effects in polygon interiors?

Viewer

N, Polygon

| :|E+KAIAL+Zi(KD(N. L)l +Ks(V e R)")

19

e N
Phong Shading

» Method 2: One lighting calculation per pixel

o Approximate surface normals for points inside polygons
by bilinear interpolation of normals from vertices

Viewer N,

N, Polygon
J
4)
Phong Shading
 Bilinearly interpolate surface normals at vertices
down and across scan lines
J

20

4)
Polygon Shading Algorithms
Wireframe Flat
Gouraud Phong
Watt Plate7j

-

~

?

B2
<
B

Shading Issues

=8r8

* Problems with interpolated shading:

Polygonal silhouettes

Perspective distortion

Orientation dependence (due to bilinear interpolation)
Problems at T-vertices

Problems computing shared vertex normals

[e]

[e]

[e]

[e]

[e]

21

=
Summary

Eﬁ‘%

o

« 2D polygon scan conversion
o Paint pixels inside primitive
o Sweep-line algorithm for polygons

» Polygon Shading Algorithms

o Flat L ess expensive

o Gouraud

o Phong

o Ray casting More accurate
* Key ideas:

o Sampling and reconstruction
o Spatial coherence

