
1

Ray Casting

Thomas Funkhouser

Princeton University

C0S 426, Fall 2000

3D Rendering

• The color of each pixel on the view plane
depends on the radiance emanating from
visible surfaces

View plane

Eye position

Simplest method
is ray casting

Rays
through

view plane

2

Ray Casting

• For each sample …
� Construct ray from eye position through view plane
� Find first surface intersected by ray through pixel
� Compute color sample based on surface radiance

Ray Casting

• For each sample …
� Construct ray from eye position through view plane
� Find first surface intersected by ray through pixel
� Compute color sample based on surface radiance

Samples on
view plane

Eye position

Rays
through

view plane

3

Ray Casting

• Simple implementation:

Image RayCast(Camera camera, Scene scene, int width, int height)
{

Image image = new Image(width, height);
for (int i = 0; i < width; i++) {

for (int j = 0; j < height; j++) {
Ray ray = ConstructRayThroughPixel(camera, i, j);
Intersection hit = FindIntersection(ray, scene);
image[i][j] = GetColor(hit);

}
}
return image;

}

Ray Casting

• Simple implementation:

Image RayCast(Camera camera, Scene scene, int width, int height)
{

Image image = new Image(width, height);
for (int i = 0; i < width; i++) {

for (int j = 0; j < height; j++) {
Ray ray = ConstructRayThroughPixel(camera, i, j);
Intersection hit = FindIntersection(ray, scene);
image[i][j] = GetColor(hit);

}
}
return image;

}

4

Constructing Ray Through a Pixel

� � �
	��

�
���

����� � � � � � � �
�

P0

� �
���
� �!

View
Plane

P

V

Ray: P = P0 + tV

Constructing Ray Through a Pixel

• 2D Example

d
Θ towardsP0

right

right = towards x up

Θ = frustum half-angle
d = distance to view plane

P1 = P0 + d*towards - d*tan(Θ)*right
P2 = P0 + d*towards + d*tan(Θ)*right

P1

P2

2*d*tan(Θ
)

P

P = P1 + (i/width + 0.5) * 2*d*tan (Θ)*right
V = (P - P0) / ||P - P0 ||

V

Ray: P = P0 + tV

5

Ray Casting

• Simple implementation:

Image RayCast(Camera camera, Scene scene, int width, int height)
{

Image image = new Image(width, height);
for (int i = 0; i < width; i++) {

for (int j = 0; j < height; j++) {
Ray ray = ConstructRayThroughPixel(camera, i, j);
Intersection hit = FindIntersection(ray, scene);
image[i][j] = GetColor(hit);

}
}
return image;

}

Ray-Scene Intersection

• Intersections with geometric primitives
" Sphere
Triangle
$ Groups of primitives (scene)

• Acceleration techniques
% Bounding volume hierarchies
& Spatial partitions

» Uniform grids
» Octrees
» BSP trees

6

Ray-Sphere Intersection

Ray: P = P0 + tV
Sphere: |P - O|2 - r 2 = 0

P0

V

O

P

r

P’

Ray-Sphere Intersection I

Ray: P = P0 + tV
Sphere: |P - O|2 - r 2 = 0

Substituting for P, we get:
|P0 + tV - O|2 - r 2 = 0

Solve quadratic equation:
at2 + bt + c = 0

where:
a = 1
b = 2 V • (P0 - O)
c = |P0 - C|2 - r 2 = 0

P0

V

O

P

r

P’

Algebraic Method

P = P0 + tV

7

Ray-Sphere Intersection II

Ray: P = P0 + tV
Sphere: |P - O|2 - r 2 = 0

L = O - P0

tca = L • V
if (tca < 0) return 0

d2 = L • L - tca
2

if (d2 > r2) return 0

thc = sqrt(r2 - d2)
t = tca - thc and tca + thc

P0

V

O

P

r

P’

rdthc

tca

L

Geometric Method

P = P0 + tV

Ray-Sphere Intersection

P0

V

O

P
r

N = (P - O) / ||P - O||

N

• Need normal vector at intersection
for lighting calculations

8

Ray-Scene Intersection

• Intersections with geometric primitives
' Sphere
» Triangle
(Groups of primitives (scene)

• Acceleration techniques
) Bounding volume hierarchies
* Spatial partitions

» Uniform grids
» Octrees
» BSP trees

Ray-Triangle Intersection

• First, intersect ray with plane

• Then, check if point is inside triangle

P

P0

V

9

Ray-Plane Intersection

Ray: P = P0 + tV
Plane: P • N + d = 0

Substituting for P, we get:
(P0 + tV) • N + d = 0

Solution:
t = -(P0 • N + d) / (V • N)

N

P

P0

V

Algebraic Method

P = P0 + tV

Ray-Triangle Intersection I

• Check if point is inside triangle algebraically

P

P0

N1

T1

T2

T3

V2

V1

For each side of triangle
V1 = T1 - P
V2 = T2 - P
N1 = V2 x V1
Normalize N1
d1 = -P0 • N1
if ((P • N1 + d1) < 0)

return FALSE;
end

10

Ray-Triangle Intersection II

• Check if point is inside triangle parametrically

P

P0

Compute α, β:
P = α (T2-T1) + β (T3-T1)

Check if point inside triangle.
0 ≤ α ≤ 1 and
0 ≤ β ≤ 1

V
α

β
T1

T2

T3

Other Ray-Primitive Intersections

• Cone, cylinder, ellipsoid:
+ Similar to sphere

• Box
, Intersect 3 front-facing planes, return closest

• Convex polygon
- Same as triangle (check point-in-polygon algebraically)

• Concave polygon
. Same plane intersection
/ More complex point-in-polygon test

11

Ray-Scene Intersection

• Find intersection with front-most primitive in group

A

B

C

D

E

F

Intersection FindIntersection(Ray ray, Scene scene)
{

min_t = infinity
min_primitive = NULL
For each primitive in scene {

t = Intersect(ray, primitive);
if (t < min_t) then

min_primitive = primitive
min_t = t

}
}
return Intersection(min_t, min_primitive)

}

Ray-Scene Intersection

• Intersections with geometric primitives
0 Sphere
1 Triangle
2 Groups of primitives (scene)

» Acceleration techniques
3 Bounding volume hierarchies
4 Spatial partitions

» Uniform grids
» Octrees
» BSP trees

Next Time!

12

Summary

• Writing a simple ray casting renderer is easy
5 Generate rays
6 Intersection tests
7 Lighting calculations

Image RayCast(Camera camera, Scene scene, int width, int height)
{

Image image = new Image(width, height);
for (int i = 0; i < width; i++) {

for (int j = 0; j < height; j++) {
Ray ray = ConstructRayThroughPixel(camera, i, j);
Intersection hit = FindIntersection(ray, scene);
image[i][j] = GetColor(hit);

}
}
return image;

}

