

Image Quantization, Halftoning, and Dithering

Thomas Funkhouser Princeton University C0S 426, Fall 2000

Overview

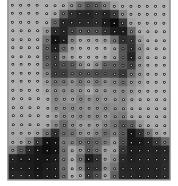
- Image representation
 - What is an image?
- Quantization
 - Errors due to limited intensity resolution
- · Halftoning and Dithering
 - Reduce effect of quantization errors

What is an Image?

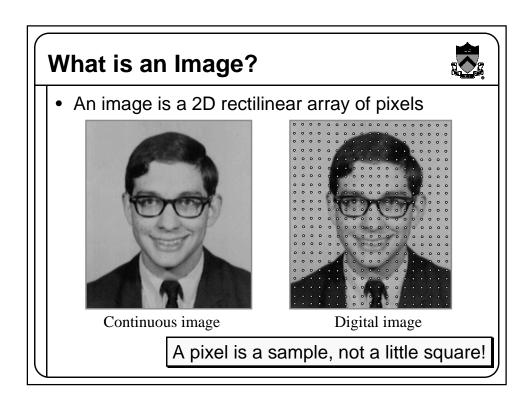
• An image is a 2D rectilinear array of pixels

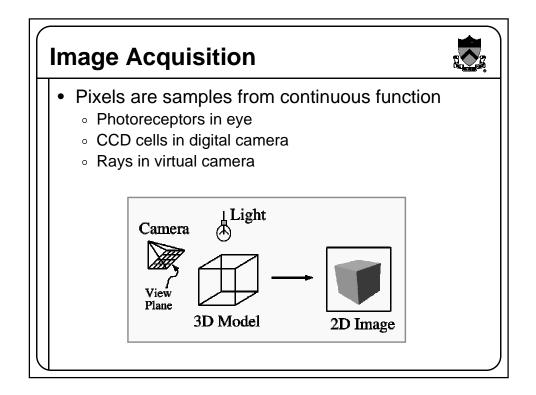
Continuous image

Digital image


What is an Image?

• An image is a 2D rectilinear array of pixels




Continuous image

Digital image

A pixel is a sample, not a little square!

Image Resolution

- Intensity resolution
 - Each pixel has only "Depth" bits for colors/intensities
- Spatial resolution
 - Image has only "Width" x "Height" pixels
- Temporal resolution
 - Monitor refreshes images at only "Rate" Hz

Typical Resolutions

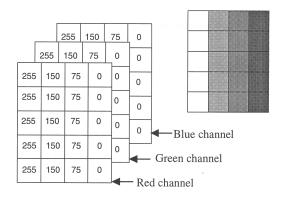
	Width x Height	Depth	Rate
NTSC	640 x 480	8	30
Workstation	1280 x 1024	24	75
Film	3000 x 2000	12	24
Laser Printer	6600 x 5100	1	-

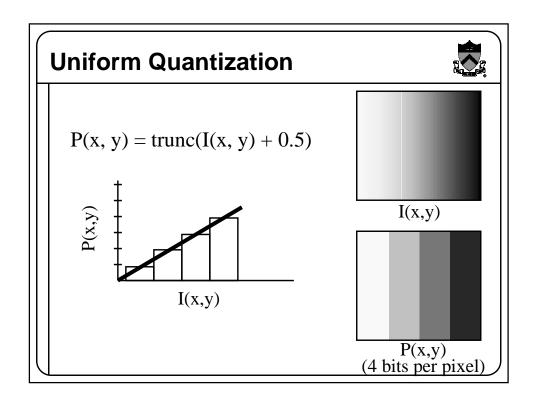
Sources of Error

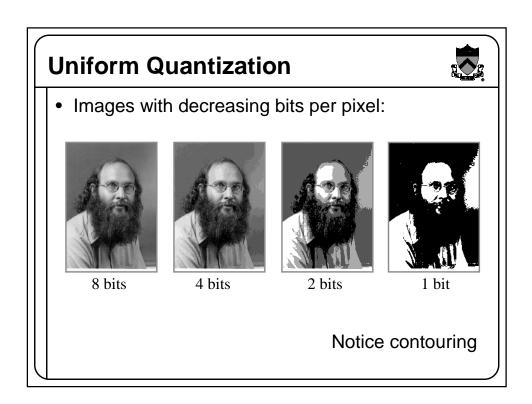
- Intensity quantization
 - Not enough intensity resolution
- Spatial aliasing
 - Not enough spatial resolution
- Temporal aliasing
 - $\circ~$ Not enough temporal resolution

$$E^{2} = \sum_{(x,y)} (I(x,y) - P(x,y))^{2}$$

Overview

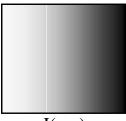



- Image representation
 - What is an image?
- Quantization
 - Errors due to limited intensity resolution
- Halftoning and Dithering
 - Reduce effect of quantization errors

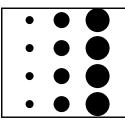

Quantization

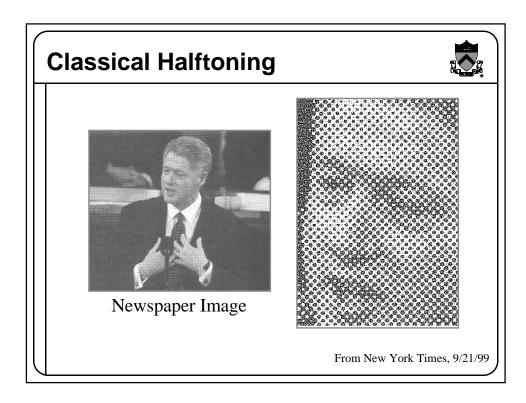
- · Artifacts due to limited intensity resolution
 - $\circ\,$ Frame buffers have limited number of bits per pixel
 - Physical devices have limited dynamic range

Overview



- Image representation
 - What is an image?
- Quantization
 - Errors due to limited intensity resolution
- » Halftoning and Dithering
 - Reduce effects of quantization


Classical Halftoning


- Use dots of varying size to represent intensities
 - Area of dots proportional to intensity in image

I(x,y)

P(x,v)

Halftone patterns

• How many intensities in a n x n cluster?

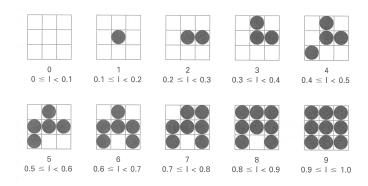


Figure 14.37 from H&B

Overview

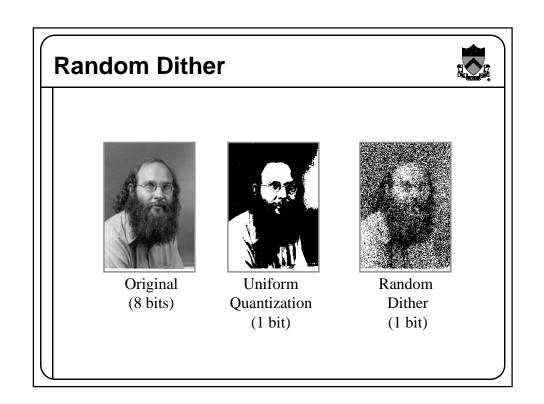
- Image representation
 - What is an image?
- Quantization
 - Errors due to limited intensity resolution
- » Halftoning and Dithering
 - Reduce effects of quantization

Dithering

- Distribute errors among pixels
 - Exploit spatial integration in our eye
 - Display greater range of perceptible intensities

Original (8 bits)

Uniform Quantization (1 bit)


Floyd-Steinberg Dither (1 bit)

Dithering

- We'll consider three dithering methods...
 - Random dither
 - Ordered dither
 - Error diffusion dither

Random Dither • Randomize quantization errors • Errors appear as noise $I(x,y) \qquad I(x,y)$ P(x,y) = trunc(I(x,y) + noise(x,y) + 0.5)

Ordered Dither

- Pseudo-random quantization errors
 - Matrix stores pattern of threshholds

$$i = x \mod n$$

$$j = y \mod n$$

$$e = I(x,y) - trunc(I(x,y))$$

$$if (e > D(i,j))$$

$$P(x,y) = ceil(I(x,y))$$
else
$$P(x,y) = floor(I(x,y))$$

Ordered Dither

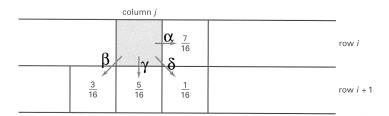
• Bayer's ordered dither matrices

$$D_{n} = \begin{bmatrix} 4D_{n/2} + D_{2}(1,1)U_{n/2} & 4D_{n/2} + D_{2}(1,2)U_{n/2} \\ 4D_{n/2} + D_{2}(2,1)U_{n/2} & 4D_{n/2} + D_{2}(2,2)U_{n/2} \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix} \qquad D_4 = \begin{bmatrix} 15 & 7 & 13 & 5 \\ 3 & 11 & 1 & 9 \\ 12 & 4 & 14 & 6 \\ 0 & 8 & 2 & 10 \end{bmatrix}$$

Original (8 bits)

Random Dither (1 bit)



Ordered Dither (1 bit)

Error Diffusion Dither

- Spread quantization error over neighbor pixels
 - Error dispersed to pixels right and below

$$\alpha + \beta + \gamma + \delta = 1.0$$

Figure 14.42 from H&B

Floyd-Steinberg Algorithm


```
for (x = 0; x < width; x++) {
	for (y = 0; y < height; y++) {
	P(x,y) = trunc(I(x,y) + 0.5)
	e = I(x,y) - P(x,y)
	I(x,y+1) += \alpha * e;
	I(x+1,y-1) += \beta * e;
	I(x+1,y) += \gamma * e;
	I(x+1,y+1) += \delta * e;
}
```

Error Diffusion Dither

Original (8 bits)

Random Dither (1 bit)

Ordered Dither (1 bit)

Floyd-Steinberg
Dither
(1 bit)

Image Processing

- Quantization
 - Uniform Quantization
 - Random dither
 - Ordered dither
 - Floyd-Steinberg dither
- Pixel operations
 - Add random noise
 - Add luminance
 - Add contrast
 - Add saturation

- Filtering
 - Blur
 - Detect edges
- Warping
 - Scale
 - Rotate
 - Warps
 - Morphs
- Combining
 - Composite

Summary

- Image Representation
 - An image is a 2D rectilinear array of pixels
 - A pixel is a sample, not a little square
 - Images have limited resolution
- Quantization
 - Errors due to limited intensity resolution
- · Halftoning and Dithering
 - Reduce effects of quantization
 - Distribute errors among pixels
 - » Exploit spatial integration in our eye
 - » Display greater range of perceptible intensities