
COS 426 Lecture Notes #9

Lecture Notes #9 - Curves

Reading:

Angel: Chapter 9

Foley et al., Sections 11(intro) and 11.2

Overview

Introduction to mathematical splines

Bezier curves

Continuity conditions (C0, C1, C2, G1, G2)

Creating continuous splines

C2 interpolating splines

B-splines

Catmull-Rom splines

1

COS 426 Lecture Notes #9

Introduction

2

Mathematical splines are motivated by the "loftsman's spline":

• Long, narrow strip of wood or plastic

• Used to fit curves through specified data points

• Shaped by lead weights called "ducks"

• Gives curves that are "smooth" or "fair"

Such splines have been used for designing:

• Automobiles

• Ship hulls

• Aircraft fuselages and wings

COS 426 Lecture Notes #9

Requirements

3

Here are some requirements we might like to have in our
mathematical splines:

• Predictable control

• Multiple values

• Local control

• Versatility

• Continuity

COS 426 Lecture Notes #9

Mathematical splines

4

The mathematical splines we'll use are:

• Piecewise

• Parametric

• Polynomials

Let's look at each of these terms......

COS 426 Lecture Notes #9

Parametric curves

5

In general, a "parametric" curve in the plane is expressed as:

x = x(t)

y = y(t)

Example: A circle with radius r centered at the origin is given by:

x = r cos t

y = r sin t

By contrast, an "implicit" representation of the circle is:

COS 426 Lecture Notes #9

Parametric polynomial curves

6

A parametric "polynomial" curve is a parametric curve where each
function x(t), y(t) is described by a polynomial:

Polynomial curves have certain advantages:

• Easy to compute

• Infinitely differentiable

Σ a
i
ti

i=0

n
x(t) =

Σ b
i
ti

i=0

n
y(t) =

COS 426 Lecture Notes #9

Piecewise parametric polynomial curves

7

A "piecewise" parametric polynomial curve uses different
polynomial functions for different parts of the curve.

• Advantage: Provides flexibility

• Problem: How do you guarantee smoothness at the
joints? (Problem known as "continuity.")

In the rest of this lecture, we'll look at:

1. Bezier curves -- general class of polynomial curves

2. Splines -- ways of putting these curves together

COS 426 Lecture Notes #9

Bezier curves

8

• Developed simultaneously by Bezier (at Renault) and deCasteljau
(at Citroen), circa 1960.

• The Bezier curve Q(u) is defined by nested interpolation:

• V
i
's are "control points"

• { V0, ... , Vn
} is the "control polygon"

COS 426 Lecture Notes #9

Bezier curves: Basic properties

9

Bezier curves enjoy some nice properties:

• Endpoint interpolation:

• Convex hull: The curve is contained in the convex hull of its
control polygon

• Symmetry:

Q(0) = V0

Q(1) = V
n

Q(u) defined by {V0, ..., Vn
}

Q(1 - u) defined by {V
n
, ... , V0}

COS 426 Lecture Notes #9

Bezier curves: Explicit formulation

10

Let's give V
i
 a superscript V

i
j to indicate the level of nesting.

An explicit formulation for Q(u) is given by the recurrence:

V
i
j = (1 - u) V

i
j-1 + uV

i+1
j-1

COS 426 Lecture Notes #9

Explicit formulation, cont.

11

For n = 2, we have:

Q(u) = V0
2

= (1 - u)V0
1 + uV1

1

= (1 - u) [(1 - u) V0
0 + uV1

0] + [(1 - u) V1
0 + uV2

0]

= (1 - u)2V0
0 + 2u(1 - u)V1

0 + u2V2
0

In general:

B
i
n(u) is the i'th Bernstein polynomial of degree n.

Q(u) = Vi
n

i


 




i= 0

n

∑ ui (1− u)n− i

B
i
n(u)

COS 426 Lecture Notes #9

Bezier curves: More properties

12

Here are some more properties of Bezier curves

Q(u) = Vi
n

i


 




i= 0

n

∑ ui (1− u)n− i

• Degree: Q(u) is a polynomial of degree n

• Control points: How many conditions must we specify to uniquely
determine a Bezier curve of degree n?

COS 426 Lecture Notes #9

More properties, cont.

13

• Tangents:

Q'(0) = n(V1 - V0)

Q'(1) = n(V
n
 - V

n-1)

• k'th derivatives: In general,

• Q(k)(0) depends only on V0, ..., Vk

• Q(k)(1) depends only on V
n
, ..., V

n-k

• (At intermediate points u (0, 1), all control points are
involved for every derivative.)

COS 426 Lecture Notes #9

Cubic curves

14

For the rest of this discussion, we'll restrict ourselves to piecewise
cubic curves.

• In CAGD, higher-order curves are often used

• Gives more freedom in design

• Can provide higher degree of continuity between pieces

• For Graphics, piecewise cubic let's you do just about anything

• Lowest degree for specifiying points to interpolate and
tangents

• Lowest degree for specifying curve in space

All the ideas here generalize to higher-order curves

COS 426 Lecture Notes #9

Matrix form of Bezier curves

15

Bezier curves can also be described in matrix form:

3
Q(u) = Vi

3

i


 




i= 0
∑ ui (1− u)3− i

= (1 - u)3 V0 + 3u (1 - u)2 V1 + 3u2 (1 - u) V2 + u3 V3

-1	 3 -3	 1
 3 -6	 3	 0
-3	 3	 0	 0
 1	 0	 0	 0

= u3 u2 u 1

V0

V1

V2

V3

= u3 u2 u 1

V0

V1

V2

V3

MBezier

COS 426 Lecture Notes #9

Display: Recursive subdivision

16

Q: Suppose you wanted to draw one of these Bezier curves -- how
would you do it?

A: Recursive subdivision:

COS 426 Lecture Notes #9

Display, cont.

17

Here's pseudocode for the recursive subdivision display algorithm:

procedure Display({ V0, ..., Vn
}):

if {V0, ..., Vn
} flat within ε then

Output line segment V0Vn

else

Subdivide to produce {L0, ..., Ln
} and {R0, ..., Rn

}

Display({ L0, ..., Ln
})

Display({ R0, ..., Rn
})

end if

end procedure

COS 426 Lecture Notes #9

Splines

18

To build up more complex curves, we can piece together different
Bezier curves to make "splines."

For example, we can get:

• Positional (C0) continuity:

• Derivative (C1) continuity:

Q: How would you build an interactive system to satisfy these constraints?

COS 426 Lecture Notes #9

Advantages of splines

19

Advantages of splines over higher-order Bezier curves:

• Numerically more stable

• Easier to compute

• Fewer bumps and wiggles

COS 426 Lecture Notes #9

Tangent (G1) continuity

20

Q: Suppose the tangents were in opposite directions but not of same
magnitude -- how does the curve appear?

This construction gives "tangent (G1) continuity."

Q: How is G1 continuity different from C1?

COS 426 Lecture Notes #9

Curvature (C2) continuity

21

Q: Suppose you want even higher degrees of continuity -- e.g., not just
slopes but curvatures -- what additional geometric constraints are imposed?

We'll begin by developing some more mathematics.....

COS 426 Lecture Notes #9

Operator calculus

22

Let's use a tool known as "operator calculus."

Define the operator D by:

DV
i
 V

i+1

Rewriting our explicit formulation in this notation gives:

Q(u) = Vi
n

i


 




i = 0

n
∑ ui (1− u)n− i

= Di
n

i


 




i = 0

n
∑ ui (1− u)n− i

= V0
n

i


 




i = 0

n
∑ (uD)i (1− u)n− i

V0

Applying the binomial theorem gives: = (uD + (1 - u))n V0

COS 426 Lecture Notes #9

Taking the derivative

23

One advantage of this form is that now we can take the derivative:

Q'(u) = n(uD + (1 - u))n-1 (D - 1) V0

What's (D - 1) V0?

Plugging in and expanding:

This gives us a general expression for the derivative Q'(u).

= Di
n - 1

i


 




i= 0

n-1
∑ ui (1− u)n−1 - i (V0n V1)Q'(u)

COS 426 Lecture Notes #9

Specializing to n = 3

24

What's the derivative Q'(u) for a cubic Bezier curve?

Note that:

• When u = 0: Q'(u) = 3(V1 - V0)

• When u = 1: Q'(u) = 3(V3 - V2)

Geometric interpretation:

So for C1 continuity, we need to set:

3(V3 - V2) = 3(W1 - W0)

COS 426 Lecture Notes #9

Taking the second derivative

25

Taking the derivative once again yields:

Q''(u) = n (n - 1) (uD + (1 - u))n-2 (D - 1)2 V0

What does (D - 1)2 do?

COS 426 Lecture Notes #9

Second-order continuity

26

So the conditions for second-order continuity are:

(V3 - V2) = (W1 - W0)

(V3 - V2) - (V2 - V1) = (W2 - W1) - (W1 - W0)

Putting these together gives:

Geometric interpretation

COS 426 Lecture Notes #9

C3 continuity

27

Summary of continuity conditions

• C0 straightforward, but generally not enough
• C3 is too constrained (with cubics)

COS 426 Lecture Notes #9

Creating continuous splines

28

We'll look at three ways to specify splines with C1 and C2 continuity:

1. C2 interpolating splines

2. B-splines

3. Catmull-Rom splines

COS 426 Lecture Notes #9

C2 Interpolating splines

29

The control points specified by the user, called "joints," are interpolated
by the spline.

For each of x and y, we needed to specify ______ conditions for each
cubic Bezier segment.

So if there are m segments, we'll need ______ constraints.

Q: How many of these constraints are determined by each joint?

COS 426 Lecture Notes #9

In-depth analysis, cont.

30

At each interior joint j, we have:

1. Last curve ends at j

2. Next curve begins at j

3. Tangents of two curves at j are equal

4. Curvature of two curves at j are equal

The m segments give:

• ______ interior joints

• ______ conditions

The 2 end joints give 2 further contraints:

1. First curve begins at first joint

2. Last curve ends at last joint

Gives _______ constraints altogether.

COS 426 Lecture Notes #9

End conditions

31

The analysis shows that specifying m + 1 joints for m segments leaves 2
extra degrees of freedom.

These 2 extra constraints can be specified in a variety of ways:

• An interactive system

• Constraints specified as ________

• "Natural" cubic splines

• Second derivatives at endpoints defined to be 0

• Maximal continuity

• Require C3 continuity between first and last pairs of curves

COS 426 Lecture Notes #9

C2 Interpolating splines

32

Problem: Describe an interactive system for specifiying C2 interpolating splines.

Solution:

1. Let user specify first four Bezier control points.

2. This constrains next _____ control points -- draw these in.

3. User then picks _____ more

4. Repeat steps 2-3.

COS 426 Lecture Notes #9

Global vs. local control

33

These C2 interpolating splines yield only "global control" -- moving any
one joint (or control point) changes the entire curve!

Global control is problematic:

• Makes splines difficult to design

• Makes incremental display inefficient

There's a fix, but nothing comes for free. Two choices:

• B-splines

• Keep C2 continuity

• Give up interpolation

• Catmull-Rom splines

• Keep interpolation

• Give up C2 continuity -- provides C1 only

COS 426 Lecture Notes #9

B-splines

34

Previous construction (C2 interpolating splines):

• Choose joints, constrained by the "A-frames."

New construction (B-splines):

• Choose points on A-frames

• Let these determine the rest of Bezier control points and joints

The B-splines I'll describe are known more precisely as "uniform
B-splines."

COS 426 Lecture Notes #9

B-spline construction

35

The points specified by the user in this construction are called "de Boor points."

COS 426 Lecture Notes #9

B-spline properties

36

Here are some properties of B-splines:

• C2 continuity

• Approximating

• Does not interpolate deBoor points

• Locality

• Each segment determined by 4 deBoor points

• Each deBoor point determines 4 segments

• Convex hull

• Curve lies inside convex hull of deBoor points

COS 426 Lecture Notes #9

Algebraic construction of B-splines

37

V1 = ______ B1 + ______ B2

V2 = ______ B1 + ______ B2

V0 = ______ [______ B0 + ______ B1] + ______ [______ B1 + ______ B2]

 = ______ B0 + ______ B1 + ______ B2

V3 = ______ B1 + ______ B2 + ______ B3

COS 426 Lecture Notes #9

Algebraic construction of B-splines, cont.

38

Once again, this construction can be expressed in terms of a matrix:

1	 4	 1	 0
0	 4	 2	 0
0	 2	 4	 0
0	 1	 4	 1

=

B0

B1

B2

B3

1

6

V0

V1

V2

V3

COS 426 Lecture Notes #9

Drawing B-splines

39

Drawing B-splines is therefore quite simple:

procedure Draw-B-Spline ({B0, ..., Bn}):

for i = 0 to n - 3 do

Convert B
i
, ..., B

i+3 into a Bezier control polygon V0, ..., V3

Display ({V0, ... , V3})

end for

end procedure

COS 426 Lecture Notes #9

Multiple vertices

40

Q: What happens if you put more than one control point in the same
place?

Some possibilities:

• Triple vertex

• Double vertex

• Collinear vertices

COS 426 Lecture Notes #9

End conditions

41

You can also use multiple vertices at the endpoints:

• Double endpoint

• Curve tangent to line between first distinct points

• Triple endpoint

• Curve interpolates endpoint

• Starts out with a line segment

• Phantom vertices

• Gives interpolation without line segment at ends

COS 426 Lecture Notes #9

Catmull-Rom splines

42

The Catmull-Rom splines

• Give up C2 continuity

• Keep interpolation

For the derivation, let's go back to the interpolation algorithm. We had 4
conditions at each joint j:

1. Last curve ends at j

2. Next curve begins at j

3. Tangents of two curves at j are equal

4. Curvature of two curves at j are equal

If we ...

• Eliminate condition 4

• Make condition 3 depend only on local control points

... then we can have local control!

COS 426 Lecture Notes #9

Derivation of Catmull-Rom splines

43

Idea: (Same as B-splines)

• Start with joints to interpolate

• Build a cubic Bezier curve between successive points

The endpoints of the cubic Bezier are obvious:

V0 = B1

V3 = B2

Q: What should we do for the other two points?

COS 426 Lecture Notes #9

Derivation of Catmull-Rom, cont.

44

A: Catmull & Rom use half the magnitude of the vector between
adjacent control points:

Many other choices work -- for example, using an arbitrary constant τ
times this vector gives a "tension" control.

COS 426 Lecture Notes #9

Matrix formulation

45

The Catmull-Rom splines also admit a matrix formulation:

0	 6	 0	 0
-1	 6	 1	 0
0	 1	 6	 -1
0	 0	 6	 0

=

B0

B1

B2

B3

1

6

V0

V1

V2

V3

Exercise: Derive this matrix.

COS 426 Lecture Notes #9

Properties

46

Here are some properties of Catmull-Rom splines:

• C1 Continuity

• Interpolating

• Locality

• No convex hull property

• (Proof left as an exercise.)

