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Lecture Notes #9 - Curves

Reading: 

Angel: Chapter 9

Foley et al., Sections 11(intro) and 11.2 

Overview

Introduction to mathematical splines

Bezier curves

Continuity conditions (C0, C1, C2, G1, G2)

Creating continuous splines

C2 interpolating splines

B-splines

Catmull-Rom splines
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Introduction
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Mathematical splines are motivated by the "loftsman's spline":

• Long, narrow strip of wood or plastic

• Used to fit curves through specified data points

• Shaped by lead weights called "ducks"

• Gives curves that are "smooth" or "fair"

Such splines have been used for designing:

• Automobiles

• Ship hulls

• Aircraft fuselages and wings
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Here are some requirements we might like to have in our 
mathematical splines:

• Predictable control

• Multiple values

• Local control

• Versatility

• Continuity
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Mathematical splines
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The mathematical splines we'll use are:

• Piecewise

• Parametric

• Polynomials

Let's look at each of these terms......
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Parametric curves
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In general, a "parametric" curve in the plane is expressed as:

x = x(t)

y = y(t)

Example: A circle with radius r centered at the origin is given by:

x = r cos t

y = r sin t

By contrast, an "implicit" representation of the circle is:
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Parametric polynomial curves
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A parametric "polynomial" curve is a parametric curve where each 
function x(t), y(t) is described by a polynomial:

Polynomial curves have certain advantages:

• Easy to compute

• Infinitely differentiable

Σ a
i
ti

i=0

n
x(t) = 

Σ b
i
ti

i=0

n
y(t) = 
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Piecewise parametric polynomial curves
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A "piecewise" parametric polynomial curve uses different 
polynomial functions for different parts of the curve.

• Advantage: Provides flexibility

• Problem: How do you guarantee smoothness at the 
joints? (Problem known as "continuity.")

In the rest of this lecture, we'll look at:

1. Bezier curves -- general class of polynomial curves

2. Splines -- ways of putting these curves together



COS 426 Lecture Notes #9

Bezier curves
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• Developed simultaneously by Bezier (at Renault) and deCasteljau 
(at Citroen), circa 1960.

• The Bezier curve Q(u) is defined by nested interpolation:

• V
i
's are "control points"

• { V0, ... , Vn
} is the "control polygon"
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Bezier curves: Basic properties
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Bezier curves enjoy some nice properties:

• Endpoint interpolation:

• Convex hull: The curve is contained in the convex hull of its 
control polygon

• Symmetry:

Q(0) = V0

Q(1) = V
n

Q(u) defined by {V0, ..., Vn
}

Q(1 - u) defined by {V
n
, ... , V0}
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Bezier curves: Explicit formulation
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Let's give V
i
  a superscript V

i
j  to indicate the level of nesting.

An explicit formulation for Q(u) is given by the recurrence:

V
i
j = (1 - u) V

i
j-1 + uV

i+1
j-1
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Explicit formulation, cont.
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For n = 2, we have:

Q(u) = V0
2

= (1 - u)V0
1 + uV1

1

= (1 - u) [(1 - u) V0
0 + uV1

0] + [(1 - u) V1
0 + uV2

0]

= (1 - u)2V0
0 + 2u(1 - u)V1

0 + u2V2
0

In general:

B
i
n(u) is the i'th Bernstein polynomial of degree n.

Q(u) = Vi
n

i
 
 
  

 
 

i= 0

n

∑ ui (1− u)n− i

B
i
n(u)
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Bezier curves: More properties
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Here are some more properties of Bezier curves

Q(u) = Vi
n

i
 
 
  

 
 

i= 0

n

∑ ui (1− u)n− i

• Degree: Q(u) is a polynomial of degree n

• Control points:  How many conditions must we specify to uniquely 
determine a Bezier curve of degree n? 
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More properties, cont.
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• Tangents:

Q'(0) = n(V1 - V0)

Q'(1) = n(V
n
 - V

n-1)

• k'th derivatives: In general,

• Q(k)(0) depends only on V0, ..., Vk

• Q(k)(1) depends only on V
n
, ..., V

n-k

• (At intermediate points u      (0, 1), all control points are 
involved for every derivative.)
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Cubic curves
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For the rest of this discussion, we'll restrict ourselves to piecewise 
cubic curves.

• In CAGD, higher-order curves are often used

• Gives more freedom in design

• Can provide higher degree of continuity between pieces

• For Graphics, piecewise cubic let's you do just about anything

• Lowest degree for specifiying points to interpolate and 
tangents

• Lowest degree for specifying curve in space

All the ideas here generalize to higher-order curves
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Matrix form of Bezier curves
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Bezier curves can also be described in matrix form:

3
Q(u) = Vi

3

i
 
 
  

 
 

i= 0
∑ ui (1− u)3− i

= (1 - u)3 V0 + 3u (1 - u)2 V1 + 3u2 (1 - u) V2 + u3 V3

-1	 3    -3	 1
 3   -6	 3	 0
-3	 3	 0	 0
 1	 0	 0	 0

=   u3  u2  u  1

V0

V1

V2

V3

=   u3  u2  u  1

V0

V1

V2

V3

MBezier
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Display: Recursive subdivision
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Q: Suppose you wanted to draw one of these Bezier curves -- how 
would you do it?

A: Recursive subdivision:
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Display, cont.
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Here's pseudocode for the recursive subdivision display algorithm:

procedure Display({ V0, ..., Vn
}):

if {V0, ..., Vn
} flat within ε then

Output line segment V0Vn

else

Subdivide to produce {L0, ..., Ln
} and {R0, ..., Rn

}

Display({ L0, ..., Ln
})

Display({ R0, ..., Rn
})

end if

end procedure
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Splines
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To build up more complex curves, we can piece together different 
Bezier curves to make "splines."

For example, we can get:

• Positional (C0) continuity:

• Derivative (C1) continuity:

Q: How would you build an interactive system to satisfy these constraints?
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Advantages of splines
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Advantages of splines over higher-order Bezier curves:

• Numerically more stable

• Easier to compute

• Fewer bumps and wiggles
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Tangent (G1) continuity
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Q: Suppose the tangents were in opposite directions but not of same 
magnitude -- how does the curve appear?

This construction gives "tangent (G1) continuity."

Q: How is G1 continuity different from C1?
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Curvature (C2) continuity
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Q: Suppose you want even higher degrees of continuity -- e.g., not just 
slopes but curvatures -- what additional geometric constraints are imposed?

We'll begin by developing some more mathematics.....
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Operator calculus
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Let's use a tool known as "operator calculus."

Define the operator D by:

DV
i
      V

i+1

Rewriting our explicit formulation in this notation gives:

Q(u) = Vi
n

i
 
 
  

 
 

i = 0

n
∑ ui (1− u)n− i

= Di
n

i
 
 
  

 
 

i = 0

n
∑ ui (1− u)n− i

= V0
n

i
 
 
  

 
 

i = 0

n
∑ (uD)i (1− u)n− i

V0

Applying the binomial theorem gives:               = (uD + (1 - u))n V0
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Taking the derivative
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One advantage of this form is that now we can take the derivative:

Q'(u) = n(uD + (1 - u))n-1 (D - 1) V0

What's (D - 1) V0?

Plugging in and expanding:

This gives us a general expression for the derivative Q'(u).

= Di
n - 1

i
 
 
  

 
 

i= 0

n-1
∑ ui (1− u)n−1 - i (V0n V1)Q'(u)
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Specializing to n = 3
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What's the derivative Q'(u) for a cubic Bezier curve?

Note that:

• When u = 0: Q'(u) = 3(V1 - V0)

• When u = 1: Q'(u) = 3(V3 - V2)

Geometric interpretation:

So for C1 continuity, we need to set:

3(V3 - V2) = 3(W1 - W0)
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Taking the second derivative
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Taking the derivative once again yields:

Q''(u) = n (n - 1) (uD + (1 - u))n-2 (D - 1)2 V0

What does (D - 1)2 do?



COS 426 Lecture Notes #9

Second-order continuity
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So the conditions for second-order continuity are:

(V3 - V2) = (W1 - W0)

(V3 - V2) - (V2 - V1) = (W2 - W1) - (W1 - W0)

Putting these together gives:

Geometric interpretation
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C3 continuity
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Summary of continuity conditions

• C0 straightforward, but generally not enough
• C3 is too constrained (with cubics)
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Creating continuous splines
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We'll look at three ways to specify splines with C1 and C2 continuity:

1. C2 interpolating splines

2. B-splines

3. Catmull-Rom splines
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C2 Interpolating splines
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The control points specified by the user, called "joints," are interpolated 
by the spline.

For each of x  and y, we needed to specify ______ conditions for each 
cubic Bezier segment.

So if there are m segments, we'll need ______ constraints.

Q: How many of these constraints are determined by each joint?
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In-depth analysis, cont.

30

At each interior joint j, we have:

1. Last curve ends at j

2. Next curve begins at j

3. Tangents of two curves at j are equal

4. Curvature of two curves at j are equal

The m  segments give:

• ______ interior joints

• ______ conditions

The 2 end joints give 2 further contraints:

1. First curve begins at first joint

2. Last curve ends at last joint

Gives _______ constraints altogether.



COS 426 Lecture Notes #9

End conditions
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The analysis shows that specifying m + 1 joints for m segments leaves 2 
extra degrees of freedom.

These 2 extra constraints can be specified in a variety of ways:

• An interactive system

• Constraints specified as ________

• "Natural" cubic splines

• Second derivatives at endpoints defined to be 0

• Maximal continuity

• Require C3 continuity between first and last pairs of curves
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C2 Interpolating splines

32

Problem: Describe an interactive system for specifiying C2 interpolating splines.

Solution:

1. Let user specify first four Bezier control points.

2. This constrains next _____ control points -- draw these in.

3. User then picks _____ more

4. Repeat steps 2-3.
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Global vs. local control
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These C2 interpolating splines yield only "global control" -- moving any 
one joint (or control point) changes the entire curve!

Global control is problematic:

• Makes splines difficult to design

• Makes incremental display inefficient

There's a fix, but nothing comes for free. Two choices:

• B-splines

• Keep C2 continuity

• Give up interpolation

• Catmull-Rom splines

• Keep interpolation

• Give up C2 continuity -- provides C1 only
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B-splines
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Previous construction (C2 interpolating splines):

• Choose joints, constrained by the "A-frames."

New construction (B-splines):

• Choose points on A-frames

• Let these determine the rest of Bezier control points and joints

The B-splines I'll describe are known more precisely as "uniform 
B-splines."



COS 426 Lecture Notes #9

B-spline construction
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The points specified by the user in this construction are called "de Boor points."
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B-spline properties
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Here are some properties of B-splines:

• C2 continuity

• Approximating

• Does not interpolate deBoor points

• Locality

• Each segment determined by 4 deBoor points

• Each deBoor point determines 4 segments

• Convex hull

• Curve lies inside convex hull of deBoor points
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Algebraic construction of B-splines
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V1 = ______ B1 + ______ B2

V2 = ______ B1 + ______ B2

V0 = ______ [______ B0 + ______ B1] + ______ [______ B1 + ______ B2]

     = ______ B0 + ______ B1 + ______ B2

V3 = ______ B1 + ______ B2 + ______ B3
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Algebraic construction of B-splines, cont.
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Once again, this construction can be expressed in terms of a matrix:

1	 4	 1	 0
0	 4	 2	 0
0	 2	 4	 0
0	 1	 4	 1

=

B0

B1

B2

B3

1

6

V0

V1

V2

V3



COS 426 Lecture Notes #9

Drawing B-splines
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Drawing B-splines is therefore quite simple:

procedure Draw-B-Spline ({B0, ..., Bn}):

for i = 0 to n - 3 do

Convert B
i
, ..., B

i+3 into a Bezier control polygon V0, ..., V3

Display ({V0, ... , V3})

end for

end procedure
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Multiple vertices
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Q: What happens if you put more than one control point in the same 
place?

Some possibilities:

• Triple vertex

• Double vertex

• Collinear vertices
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End conditions
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You can also use multiple vertices at the endpoints:

• Double endpoint

• Curve tangent to line between first distinct points

• Triple endpoint

• Curve interpolates endpoint

• Starts out with a line segment

• Phantom vertices

• Gives interpolation without line segment at ends
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Catmull-Rom splines
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The Catmull-Rom splines

• Give up C2 continuity

• Keep interpolation

For the derivation, let's go back to the interpolation algorithm. We had 4 
conditions at each joint j:

1. Last curve ends at j

2. Next curve begins at j

3. Tangents of two curves at j are equal

4. Curvature of two curves at j are equal

If we ...

• Eliminate condition 4

• Make condition 3 depend only on local control points

... then we can have local control!
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Derivation of Catmull-Rom splines
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Idea: (Same as B-splines)

• Start with joints to interpolate

• Build a cubic Bezier curve between successive points

The endpoints of the cubic Bezier are obvious:

V0 = B1

V3 = B2

Q: What should we do for the other two points?
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Derivation of Catmull-Rom, cont.

44

A: Catmull & Rom use half the magnitude of the vector between 
adjacent control points:

Many other choices work -- for example, using an arbitrary constant τ 
times this vector gives a "tension" control.
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Matrix formulation
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The Catmull-Rom splines also admit a matrix formulation:

0	 6	 0	 0
-1	 6	 1	 0
0	 1	 6	 -1
0	 0	 6	 0

=

B0

B1

B2

B3

1

6

V0

V1

V2

V3

Exercise: Derive this matrix.
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Properties
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Here are some properties of Catmull-Rom splines:

• C1 Continuity

• Interpolating

• Locality

• No convex hull property

• (Proof left as an exercise.)


