COS 341, December 13, 2000 Handout Number 9

The following are last year's final exam problems and their solutions. Keep in mind that, in contrast to the current year, the exam last year was a take-home exam.

Last Year's Final Exam Problems

In the following, i, j, k, n take on integer values only.

Problem 1 [20 points] Let b_0, b_1, b_2, \cdots be the sequence defined by the following recurrence relation:

$$b_0 = 1,$$

$$b_1 = 2,$$

$$b_n = b_{n-1} + \sum_{1 \le k \le n-1} b_k b_{n-1-k} \text{ for } n \ge 2.$$

Let $B(x) = \sum_{k>0} b_k x^k$. Derive a closed-form formula for B(x).

Problem 2 [20 points] For any integer n > 0, let $G_n = (V, E)$ be a graph on 2n vertices, where $V = \{1, 2, 3, \dots, 2n\}$, and $E = \{\{i, j\} \mid 1 \leq i < j \leq 2n, j \neq n + i\}$. Answer the following questions, each with a concise but rigorous justification.

- (a) For what values of n are G_n Eulerian?
- (b) For what values of n do G_n contain a Hamiltonian circuit?
- (c) What is $\omega(G_n)$, the size of the largest clique in G_n ?
- (d) What is $\chi(G_n)$, the chromatic number of G_n ?

Remarks In other words, G_n is obtained from the complete graph on 2n vertices by deleting n edges (no two of which have any endpoints in common). Thus, G_n has exactly $\binom{2n}{2} - n$ edges.

Problem 3 [20 points] For any integer n > 0, let $H_n = (V, E)$ be a graph on 4n + 1 vertices, where $V = \{1, 2, 3, \dots, 4n, 4n + 1\}$, and

$$E = \{\{i, i+1\} \mid 1 \le i \le 4n-1\} \cup \{\{1, 4n\}, \{4n+1, n\}, \{4n+1, 2n\}, \{4n+1, 3n\}, \{4n+1, 4n\}\}.$$

Thus, H_n has exactly 4n + 4 edges. Let s_n be the number of spanning trees for H_n . Determine s_n as a closed-form expression of n.

Solutions

Problem 1

$$\sum_{n\geq 2} b_n x^n = \sum_{n\geq 2} b_{n-1} x^n + \sum_{n\geq 2} x^n \sum_{1\leq k\leq n-1} b_k b_{n-1-k}$$
$$= x \sum_{n\geq 2} b_{n-1} x^{n-1} + x \sum_{m\geq 1} x^m \sum_{1\leq k\leq m} b_k b_{m-k}.$$

This implies

$$B(x) - b_0 - b_1 x = x(B(x) - b_0) + x(b_1 x + b_2 x^2 + \dots)(b_0 + b_1 x + b_2 x^2 + \dots),$$

ie,

$$B(x) - 1 - 2x = x(B(x) - 1) + x(B(x) - 1)B(x)$$

This leads to $xB(x)^2 - B(x) + (1 + x) = 0$, and hence using $B(0) = b_0 = 1$ we have

$$B(x) = \frac{1 - \sqrt{1 - 4x(1 + x)}}{2x}.$$

Problem 2

(a) For n = 1, G_n consists of two isolated vertices and is thus by definition Eulerian. For n > 1, G_n is Eulerian since (A) it is connected (vertex 1 is connected to vertex n + 1 through 1 - 2 - (n + 1), and vertex 1 has an edge to each of the remaining vertices) and (B) every vertex has even degree (in fact 2n - 2).

(b) For n = 1, G_n consists of two isolated vertices and has no Hamiltonian circuit. For n > 1, G_n has the following Hamiltonian circuit $1, 2, 3, \dots, n-1, n, n+1, n+2, \dots, 2n, 1$.

(c) The answer is $\omega(G_n) = n$. Note that $\omega(G_n) \ge n$ since $\{1, 2, \dots, n\}$ is a clique; $\omega(G_n) < n + 1$ since any clique can contain at most one of the vertices i, n + i for each $1 \le i \le n$.

(d) The answer is $\chi(G_n) = n$. Note that $\chi(G_n) \ge n$ since $\{1, 2, \dots, n\}$ is a clique and thus each vertex in it has to be painted with a different color; $\chi(G_n) \le n$ since we can just paint both vertices i, n + i with color i, for each $1 \le i \le n$.

Problem 3 Let $E_0 = \{\{4n+1,n\}, \{4n+1,2n\}, \{4n+1,3n\}, \{4n+1,4n\}\}, \text{ and }$

$$\begin{split} E_1 &= \{\{4n,1\},\{1,2\},\{2,3\},\cdots,\{n-1,n\}\},\\ E_2 &= \{\{n,n+1\},\{n+1,n+2\},\{n+2,n+3\},\cdots,\{2n-1,2n\}\},\\ E_3 &= \{\{2n,2n+1\},\{2n+1,2n+2\},\{2n+2,2n+3\},\cdots,\{3n-1,3n\}\},\\ E_4 &= \{\{3n,3n+1\},\{3n+1,3n+2\},\{3n+2,3n+3\},\cdots,\{4n-1,4n\}\}. \end{split}$$

Then $E = \bigcup_{0 \le i \le 4} E_i$.

A spanning tree of H_n has 4n edges, and can be specified by the 4 edges missing from *E*. For $\alpha \in \{0, 1, 2, 3, 4\}$, let $s_{n,\alpha}$ be the number of spanning trees of H_n for which α of the missing edges are from E_0 . Then

$$s_n = \sum_{0 \le \alpha \le 4} s_{n,\alpha}.$$

Clearly, $s_{n,4} = 0$ since at least one edge from E_0 is needed to keep vertex 4n + 1 from being isolated.

To calculate $s_{n,3}$, we count first how many spanning trees there are that contain $\{4n + 1, n\}$ but no other edge from E_0 . A spanning tree is now specified by the one missing edge from $\bigcup_{1 \leq i \leq 4} E_i$, so that number is $|\bigcup_{1 \leq i \leq 4} E_i| = 4n$. We can prove the same result if we count the number of spanning trees that contain any one specific edge but no other edges in E_0 . Thus,

$$s_{n,3} = 4 \cdot 4n = 16n.$$

To calculate $s_{n,2}$, let a_n be the number of spanning trees containing $\{4n + 1, n\}, \{4n + 1, 2n\}$ but no other edges in E_0 ; let b_n be the number of spanning trees containing $\{4n + 1, n\}, \{4n + 1, 3n\}$ but no other edges in E_0 . Clearly,

$$s_{n,2} = 4a_n + 2b_n.$$

We compute a_n . A spanning tree of this type is specified by a missing edge chosen from E_2 , and a missing edge from $E_1 \cup E_3 \cup E_4$. Thus,

$$a_n = |E_2| \cdot |E_1 \cup E_3 \cup E_4| = 3n^2$$

Similarly,

$$b_n = |E_2 \cup E_3| \cdot |E_1 \cup E_4| = 4n^2.$$

This leads to

$$s_{n,2} = 4 \cdot 3n^2 + 2 \cdot 4n^2 = 20n^2.$$

To calculate $s_{n,1}$, let c_n be the number of spanning trees containing $\{4n + 1, n\}, \{4n + 1, 2n\}, \{4n + 1, 3n\}$ but no other edges in E_0 . Then $s_{n,1} = 4c_n$. To compute c_n , note that such a spanning tree is specified by a missing edge from each of the sets $E_2, E_3, E_4 \cup E_1$. Thus, $c_n = |E_2| \cdot |E_3| \cdot |E_4 \cup E_1| = 2n^3$. Hence,

$$s_{n,1} = 4 \cdot 2n^3 = 8n^3.$$

To calculate $s_{n,0}$, note that such a spanning tree is specified by a missing edge from each of the sets E_1, E_2, E_3, E_4 . Thus,

$$s_{n,0} = |E_1| \cdot |E_2| \cdot |E_3| \cdot |E_4| = n^4.$$

Putting everything together, we have

$$s_n = \sum_{0 \le \alpha \le 4} s_{n,\alpha} = n^4 + 8n^3 + 20n^2 + 16n.$$