Prüfer's Algorithm

Theorem 1 (Cayley Formula) The number of trees on n vertices is equal to n^{n-2} .

This theorem has many different proofs. We present a proof due to Prüfer by producing a one-to-one correspondence between the set \mathcal{T}_n of all *n*-vertex trees and the set \mathcal{L}_n of all (n-2) - tuples of integers in $\{1, 2, \dots, n\}$. Prüfer gave the following algorithm which takes a tree $T = (\{1, 2, \dots, n\}, E)$ as input, and outputs a sequence r_1, r_2, \dots, r_{n-2} where r_i are integers between 1 and *n*. Let n > 2. Prüfer's algorithm keeps two variables *k* and *F*, where *k* is an integer and *F* is a tree whose vertex set is a subset of $\{1, 2, \dots, n\}$.

Set $k \leftarrow 1$; $F \leftarrow T$;

Repeat the following loop while F has more than 2 vertices:

Let *i* be the smallest leaf in *F* (ie, vertex of degree 1), and let $\{i, j\}$ be the unique edge in *F* incident to *i*; set $r_k \leftarrow j$ and $k \leftarrow k + 1$; delete the vertex *i* and the edge $\{i, j\}$ from *F*;

As an example, consider the tree T = (V, E) where $V = \{1, 2, \dots, 9\}$ and with edges $\{1, 9\}, \{2, 3\}, \{3, 6\}, \{3, 9\}, \{4, 8\}, \{5, 8\}, \{7, 8\}, \{8, 9\}$. Applying the algorithm, after the first loop we get $r_1 = 9$, since 1 is a leaf and $\{1, 9\} \in F$ (F = T at that time), similarly after the second loop we get $r_2 = 3$ etc. Eventually, the sequence produced is 9, 3, 8, 8, 3, 9, 8.

To show that Prüfer's algorithm produces a one-to-one correspondence between \mathcal{T}_n and \mathcal{L}_n , it suffices to show that for any $(r_1, r_2, \dots, r_{n-2}) \in \mathcal{L}_n$, there exists an input tree $T \in \mathcal{T}_n$ for which the algorithm outputs $(r_1, r_2, \dots, r_{n-2})$. This proof will be left as a problem in Homework Set 9.