COS 341, October 9, 2000 Handout Number 3

Math Casino

Math Casino

Let $N = 10^4$. Roulettes in the Math Casino have the following rule. For each run, a random integer $n, 1 \le n \le N$ is uniformly generated. If $\lfloor n^{1/4} \rfloor$ divides n, you win \$5; otherwise, the \$1 bet you place is forfeited. Should you play the game? One way to make a rational decision is to calculate the probability p of winning a game, and play the game if and only if $p \ge 1/6$. How can we compute p?

By definition p = m/N, where *m* is the number of integers $1 \le n \le 10^4$ that satisfy " $\lfloor n^{1/4} \rfloor$ divides *n*". Let A_j be the set of integers $1 \le n \le N$ satisfying $\lfloor n^{1/4} \rfloor = j$ (i.e., $j^4 \le n \le (j+1)^4 - 1$) and "*j* dividing *n*". Clearly,

$$m = \sum_{1 \le j \le 10} |A_j|.$$

By inspection, we have $A_{10} = \{N\}$ and hence $|A_{10}| = 1$. Let $1 \le j \le 9$. Starting at $n = j^4$, every *j*-th integer in the range $j^4 \le n \le (j+1)^4 - 1$ satisfies *j* dividing *n*. Hence,

$$|A_j| = \lceil \frac{(j+1)^4 - 1 - j^4 + 1}{j} \rceil$$

= $\lceil 4j^2 + 6j + 4 + \frac{1}{j} \rceil$
= $4j^2 + 6j + 4 + 1$
= $4j^2 + 6j + 5.$

This shows

$$m = 1 + \sum_{1 \le j \le 9} (4j^2 + 6j + 5)$$

= 1 + 4 $\sum_{1 \le j \le 9} j^2 + 6 \sum_{1 \le j \le 9} j + 9 \cdot 5$
= 46 + 4 $\sum_{1 \le j \le 9} j^2 + 6\frac{1}{2}9 \cdot 10$
= 316 + 4 $\sum_{1 \le j \le 9} j^2$. (1)

It remains to evaluate $a \equiv \sum_{1 \le j \le 9} j^2$. Using the equality $\sum_{2 \le k \le s} {k \choose 2} = {s+1 \choose 3}$, we have

$$a = \sum_{1 \le j \le 9} j^2$$

= $\sum_{1 \le j \le 9} (2\binom{j}{2} + j)$
= $2\sum_{1 \le j \le 9} \binom{j}{2} + \frac{1}{2}9 \cdot 10$
= $2\binom{9+1}{3} + 45$
= 285.

From (1) we then have

$$m = 316 + 4 \cdot 285 = 1456.$$

Hence p = m/N = 0.1456 < 1/6, and you shouldn't play this game. This solves the Math Casino Problem.