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The Dating Problem and the Lottery Problem

Probability

A probability space Ω is a pair (U, p) where U is a finite set, and p : U → [0, 1] is a
function such that

∑
u∈U p(u) = 1. An event T is a subset of U . The probability for the

event T to occur is defined as p(T ) ≡∑u∈T p(u).

The notion of probability space is used to model a random process, in which U is the
set of all possible configurations, and configuration u is to be the realized configuration
with probability p(u). We restrict U to be a finite set for simplicity (in general U could
be infinite). The notion of event models a boolean predicate that is of interest.

The Dating Problem

In the Dating Problem with parameters n, k, the probability space is Ω = (U, p), where
U is the set of all permutations of {1, 2, · · · , n} (hence |U | = n!), and p(u) = 1/|U | for all
u ∈ U . It is easy to see that a permutation u = (i1, i2, · · · , in) ∈ U is in T if and only if
the following conditions are satisfied:

C1: 1 ∈ {ik+1, ik+2, · · · , in};
C2: Let ij = 1 where k < j ≤ n, then the minimum of i1, i2, · · · , ij−1 is among the first k
of these numbers.

Let Tj denote the set of all u’s satisfying C1, C2 with j being the j in C2. Then T is
the disjoint union of such Tj. By the Addition Principle, we have

|T | =
∑

k<j≤n
|Tj |. (1)

We assert that for each k < j ≤ n,

|Tj | =
k

j − 1
(n− 1)!. (2)

To see this, note that Tj is itself the disjoint union of Tj,1, Tj,2, · · · , Tj,k, where Tj,s consists
of u ∈ Tj with the minimum of {i1, i2, · · · , ij−1} occurring at is. Now each element
of Tj,s can be specified by first choosing an (n − j)-permuation of {2, 3, · · · , n} (to fix
ij+1, ij+2, · · · , in), and then a (j − 2)-permutation of the set L, where L is defined as the
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set {2, 3, · · · , n}−{ij+1, ij+2, · · · , in} minus its minimum element (to fix (i1, i2, · · · , ij−1)).
Therefore, by the Multiplication Principle, we have

|Tj,s| = P (n− 1, n− j) · (j − 2)!

=
(n− 1)!

(n− 1− (n− j))! (j − 2)!

=
(n− 1)!
j − 1

.

This proves (2). (Alternatively, one can argue that it is equally likely for a random u with
ij = 1 to have the minimum of i1, i2, · · · , ij−1 to occur at s for any 1 ≤ s ≤ j − 1. Since
there are (n − 1)! u’s with ij = 1, the number of such permutations with the minimum
occurring in the first k locations is equal to k

j−1 · (n− 1)!.)

It follows from (1) and (2) that

|T | =
∑

k<j≤n

k

j − 1
· (n− 1)!

= n!
k

n
(
1
k

+
1

k + 1
+ · · ·+ 1

n− 1
).

Since |U | = n!, this means

p(T ) =
k

n
(
1
k

+
1

k + 1
+ · · ·+ 1

n− 1
). (3)

This completes the analysis of the probability of success under the strategy used with
parameters n, k.

For example, if n = 8, k = 4,

p(T ) =
4
8
(
1
4

+
1
5

+
1
6

+
1
7
) = 319/840 = 0.38.

Lottery

We considered in class a simplified version of California Lottery. Let S = {1, 2, · · · , 51}.
The probability space is Ω = (U, p), where U is the set of all 6-combinations of S, and p is
uniform on U (i.e., p(u) = 1/|U | for all u ∈ U). Assume that you have picked a particular
6-combination I = {i1, i2, · · · , i6}. When the lottery drawing is to be done, the event
T corresponding to your winning 5 dollars is the set of all 6-combinations that intersect
{i1, i2, · · · , i6} in exactly three elements. (If the intersection is larger than 3, you win more
than 5 dollars.) What is p(T )?
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Clearly, p(T ) = |T |/|U |. As |U | =
(51

6
)
, we only need to calculate |T |. For each subset

J ⊆ I of size 3, let TJ be the set of all 6-combinations of S that have J as their intersection
with I. Then by the Addition Principle,

|T | =
∑
J

|TJ |.

As each |TJ | =
(|S|−|I|

3
)

=
(45

3
)
, we have |T | =

(6
3
)(45

3
)
. (Alternatively, the above formulas

follows from the Multiplication Principle as demonstrated in class.) Thus,

p(T ) =

(
6
3

)(
45
3

)
/

(
51
6

)
= 283800/18009460 = 1.5%.
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