COS 341, September 27, 2000
Handout Number 2

The Dating Problem and the Lottery Problem

Probability

A probability space Q) is a pair (U,p) where U is a finite set, and p : U — [0,1] is a
function such that ) ,cyp(u) = 1. An event T is a subset of U. The probability for the
event T' to occur is defined as p(T') = 3 ,cr p(u).

The notion of probability space is used to model a random process, in which U is the
set of all possible configurations, and configuration u is to be the realized configuration
with probability p(u). We restrict U to be a finite set for simplicity (in general U could

be infinite). The notion of event models a boolean predicate that is of interest.
The Dating Problem

In the Dating Problem with parameters n, k, the probability space is Q = (U, p), where
U is the set of all permutations of {1,2,---,n} (hence |U| =n!), and p(u) = 1/|U] for all
u € U. It is easy to see that a permutation u = (i1,42,--+,4,) € U is in T if and only if

the following conditions are satisfied:

Cl: 1€ {ik‘-i-h ik+25 T 7Zn}a
C2: Let i; = 1 where k < j < n, then the minimum of 41,42, --,4;_1 is among the first &

of these numbers.

Let T} denote the set of all u’s satisfying C1, C2 with j being the j in C2. Then T is
the disjoint union of such 7;. By the Addition Principle, we have

7= > T (1)

k<j<n
We assert that for each k < j < n,
k |
Ty = ——(n— 1)L 2)
To see this, note that T is itself the disjoint union of 13 1, T} 2, - - -, T} s, where T} ; consists
of w € T; with the minimum of {i,da,---,4;1} occurring at i;. Now each element

of Tj can be specified by first choosing an (n — j)-permuation of {2,3,---,n} (to fix
j41,%542, ,in), and then a (j — 2)-permutation of the set L, where L is defined as the



set {2,3,---,n} —{ij41,%j42, -, ip} minus its minimum element (to fix (i1,42, -, %j—1)).

Therefore, by the Multiplication Principle, we have

Tyl = Pln—1n—3)-(j—2)
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This proves (2). (Alternatively, one can argue that it is equally likely for a random u with
i; = 1 to have the minimum of 41,42, --,7;_1 to occur at s for any 1 < s < j — 1. Since
there are (n — 1)! w’s with ¢; = 1, the number of such permutations with the minimum
k

occurring in the first & locations is equal to 2 - (n — 1)!.)

It follows from (1) and (2) that
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Since |U| = n!, this means
k.1 1 1
T)="(ch—— e . 3
p(T) n(k+k+1+ +n—1) 3)

This completes the analysis of the probability of success under the strategy used with

parameters n, k.

For example, if n = 8,k = 4,

1 1 1 1
p(T) 8(4+5+6+7) 319/840 = 0.38

Lottery

We considered in class a simplified version of California Lottery. Let S = {1,2,---,51}.
The probability space is Q = (U, p), where U is the set of all 6-combinations of S, and p is
uniform on U (i.e., p(u) = 1/|U| for all u € U). Assume that you have picked a particular
6-combination I = {ij, iz, --,i6}. When the lottery drawing is to be done, the event
T corresponding to your winning 5 dollars is the set of all 6-combinations that intersect
{i1,i2, -, 16} in exactly three elements. (If the intersection is larger than 3, you win more
than 5 dollars.) What is p(T")?



Clearly, p(T) = |T|/|U|. As |U| = (%), we only need to calculate |T'|. For each subset
J C I of size 3, let Ty be the set of all 6-combinations of .S that have J as their intersection
with I. Then by the Addition Principle,

7| =I5
J

As each [Ty = (W) = (%), we have |T] = (5)(*). (Alternatively, the above formulas

follows from the Multiplication Principle as demonstrated in class.) Thus,

p(T) = (g) (Zl;) / (561> — 283800,/18009460 = 1.5%.



