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ABSTRACT
Similarity indices for high-dimensional data are very desir-
able for building content-based search systems for feature-
rich data such as audio, images, videos, and other sensor
data. Recently, locality sensitive hashing (LSH) and its
variations have been proposed as indexing techniques for
approximate similarity search. A significant drawback of
these approaches is the requirement for a large number of
hash tables in order to achieve good search quality. This pa-
per proposes a new indexing scheme called multi-probe LSH
that overcomes this drawback. Multi-probe LSH is built on
the well-known LSH technique, but it intelligently probes
multiple buckets that are likely to contain query results in
a hash table. Our method is inspired by and improves upon
recent theoretical work on entropy-based LSH designed to
reduce the space requirement of the basic LSH method. We
have implemented the multi-probe LSH method and evalu-
ated the implementation with two different high-dimensional
datasets. Our evaluation shows that the multi-probe LSH
method substantially improves upon previously proposed
methods in both space and time efficiency. To achieve the
same search quality, multi-probe LSH has a similar time-
efficiency as the basic LSH method while reducing the num-
ber of hash tables by an order of magnitude. In comparison
with the entropy-based LSH method, to achieve the same
search quality, multi-probe LSH uses less query time and 5
to 8 times fewer number of hash tables.

1. INTRODUCTION
Similarity search in high-dimensional spaces has become

increasingly important in databases, data mining, and search
engines, particularly for content-based search of feature-rich
data such as audio recordings, digital photos, digital videos,
and other sensor data. Since feature-rich data objects are
typically represented as high-dimensional feature vectors,
similarity search is usually implemented as K-Nearest Neigh-
bor (KNN) or Approximate Nearest Neighbors (ANN) search
in high-dimensional feature-vector space.
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An ideal indexing scheme for similarity search should have
the following properties:

• Accurate: A query operation should return desired re-
sults that are very close to those of the brute-force,
linear-scan approach.

• Time efficient: A query operation should take O(1) or
O(log N) time where N is the number of data objects
in the dataset.

• Space efficient: An index should require a very small
amount of space, ideally linear in the dataset size, not
much larger than the raw data representation. For rea-
sonably large datasets, the index data structure may
even fit into main memory.

• High-dimensional: The indexing scheme should work
well for datasets with very high intrinsic dimensional-
ities (e.g. on the order of hundreds).

In addition, the construction of the index data structure
should be quick and it should deal with various sequences
of insertions and deletions conveniently.

Current approaches do not satisfy all of these require-
ments. Previously proposed tree-based indexing methods for
KNN search such as R-tree [14], K-D tree [4], SR-tree [18],
navigating-nets [19] and cover-tree [5] return accurate re-
sults, but they are not time efficient for data with high (in-
trinsic) dimensionalities. It has been shown in [27] that
when the dimensionality exceeds about 10, existing index-
ing data structures based on space partitioning are slower
than the brute-force, linear-scan approach.

For high-dimensional similarity search, the best-known in-
dexing method is locality sensitive hashing (LSH) [17]. The
basic method uses a family of locality-sensitive hash func-
tions to hash nearby objects in the high-dimensional space
into the same bucket. To perform a similarity search, the in-
dexing method hashes a query object into a bucket, uses the
data objects in the bucket as the candidate set of the results,
and then ranks the candidate objects using the distance
measure of the similarity search. To achieve high search
accuracy, the LSH method needs to use multiple hash ta-
bles to produce a good candidate set. Experimental studies
show that this basic LSH method needs over a hundred [13]
and sometimes several hundred hash tables [6] to achieve
good search accuracy for high-dimensional datasets. Since
the size of each hash table is proportional to the number of
data objects, the basic approach does not satisfy the space-
efficiency requirement.

In a recent theoretical study [22], Panigrahy proposed an
entropy-based LSH method that generates randomly “per-
turbed” objects near the query object, queries them in addi-



tion to the query object, and returns the union of all results
as the candidate set. The intention of the method is to trade
time for space requirements. To explore the practicality of
this approach, we have implemented it and conducted an
experimental study. We found that although the entropy-
based method can reduce the space requirement of the basic
LSH method, significant improvements are possible.

This paper presents a new indexing scheme, called multi-
probe LSH, that satisfies all the requirements of a good sim-
ilarity indexing scheme. The main idea is to build on the
basic LSH indexing method, but to use a carefully derived
probing sequence to look up multiple buckets that have a
high probability of containing the nearest neighbors of a
query object. We have developed and analyzed two schemes
to compute the probing sequence: step-wise probing and
query-directed probing. By probing multiple buckets in each
hash table, the method requires far fewer hash tables than
previously proposed LSH methods. By picking the probing
sequence carefully, it also requires checking far fewer buckets
than entropy-based LSH.

We have implemented the basic LSH, entropy-based LSH,
and the multi-probe LSH methods and evaluated them with
two datasets. The first dataset contains 1.3 million web im-
ages, each represented by a 64-dimensional feature vector.
The second is an audio dataset that contains 2.6 million
words, each represented by a 192-dimensional feature vector.
Our evaluation shows that the multi-probe LSH method sub-
stantially improves over the basic and entropy-based LSH
methods in both space and time efficiency. To achieve over
0.9 recall, the multi-probe LSH method reduces the number
of hash tables of the basic LSH method by a factor of 14 to
18 while achieving similar time efficiencies. In comparison
with the entropy-based LSH method, multi-probe LSH re-
duces the space requirement by a factor of 5 to 8 and uses
less query time, while achieving the same search quality.

We emphasize that our focus in this paper is on improving
the space and time efficiency of LSH, already established
as an attractive technique for high-dimensional similarity
search. We compare our new method to previously proposed
LSH methods – a detailed comparison with other indexing
techniques is outside the scope of this work.

2. SIMILARITY SEARCH PROBLEM
The problem of similarity search refers to finding objects

that have similar characteristics to the query object. When
data objects are represented by d-dimensional feature vec-
tors, the goal of similarity search for a given query object
q, is to find the K objects that are closest to q according to
a distance function in the d-dimensional space. The search
quality is measured by the fraction of the nearest K objects
we are able to retrieve.

In this paper, we also consider the similarity search prob-
lem as solving the approximate nearest neighbors problem,
where the goal is to find K objects whose distances are
within a small factor (1+ε) of the true K-nearest neighbors’
distances. With this viewpoint, we also measure search qual-
ity by comparing the distances to the query for the K ob-
jects retrieved to the corresponding distances of the K near-
est objects. Our goal is to design a good indexing method
for similarity search of large-scale datasets that can achieve
high search quality with high time and space efficiency.

3. LSH INDEXING
The basic idea of locality sensitive hashing (LSH) is to

use hash functions that map similar objects into the same
hash buckets with high probability. Performing a similarity
search query on an LSH index consists of two steps: (1)
using LSH functions to select “candidate” objects for a given
query q, and (2) ranking the candidate objects according to
their distances to q. This section provides a brief overview
of LSH functions, the basic LSH indexing method and a
recently proposed entropy-based LSH indexing method.

3.1 Locality Sensitive Hashing (LSH)
The notion of locality sensitive hashing (LSH) was first

introduced by Indyk and Motwani in [17]. LSH function
families have the property that objects that are close to each
other have a higher probability of colliding than objects that
are far apart. Specifically, let S be the domain of objects,
and D be the distance measure between objects.

Definition 1. A function family H = {h : S → U} is
called (r, cr, p1, p2)-sensitive for D if for any q, p ∈ S

• If D(q, p) ≤ r then PrH[h(q) = h(p)] ≥ p1,
• If D(q, p) > cr then PrH[h(q) = h(p)] ≤ p2.

To use LSH for approximate nearest neighbor search, we
pick c > 1 and p1 > p2. With these choices, nearby objects
(those within distance r) have a greater chance (p1 vs. p2)
of being hashed to the same value than objects that are far
apart (those at a distance greater than cr away).

Different LSH families can be used for different distance
functions D. Families for Jaccard measure, Hamming dis-
tance, `1 and `2 are known [17]. Datar et al.[8] have pro-
posed LSH families for lp norms, based on p-stable distribu-
tions [28, 16]. Here, each hash function is defined as:

ha,b(v) =
ja · v + b

W

k
where a is a d-dimensional random vector with entries cho-
sen independently from a p-stable distribution and b is a
real number chosen uniformly from the range [0, W ]. Each
hash function ha,b : Rd → Z maps a d-dimensional vector v
onto the set of integers. The p-stable distribution used in
this work is the Gaussian distribution, which is 2-stable and
works for the Euclidean distance.

3.2 Basic LSH Indexing
Using a family of LSH functions H, we can construct in-

dexing data structures for similarity search. The basic LSH
indexing method works as follows [17, 13, 8]:

• For an integer M , define a function family G = {g :
S → UM}, and for g ∈ G, g(v) = (h1(v), . . . , hM (v)),
where hj ∈ H for 1 ≤ j ≤ M (i.e., g is the concatena-
tion of M LSH functions).

• For an integer L, choose g1, . . . , gL from G, indepen-
dently and uniformly at random. Each of the L func-
tions gi(1 ≤ i ≤ L) is used to construct one hash table,
resulting in L hash tables1.

1The optimal M and L values depend on the nearest neigh-
bors’ distance R. In practice, multiple sets of hash tables are
used in order to cover different R values (e.g., r, 2r, 4r, . . . ),
or use the LSH Forest [3] method.



By concatenating multiple LSH functions, the collision
probability of far away objects becomes very small (pM

2 ),
but it also reduces the collision probability of nearby objects
(pM

1 ). As a result, multiple hash tables are needed in order
to find most of the nearby objects.

LSH-based indices are constructed and maintained using
the following three operations:

• init (L, M, W ) constructs L hash tables, each contain-
ing M LSH functions in the form of ha,b(v) = ba·v+b

W
c

with randomly chosen a and b.
• insert (v) computes the hash values gi(v) for the i-th

hash table and places v into the hash bucket2 to which
gi(v) points, for i = 1, . . . , L.

• delete (v) removes v from the hash bucket that gi(v)
points to in the i-th table, for i = 1, . . . , L.

The basic LSH indexing method processes a similarity
search, for a given query q, in two steps. The first step is
to generate a candidate set by the union of all buckets that
query q is hashed to. The second step ranks the objects
in the candidate set according to their distances to query
object q, and then returns the top K objects.

The main drawback of the basic LSH indexing method is
that it may require a large number of hash tables to cover
most nearest neighbors. For example, over 100 hash tables
are needed to achieve 1.1-approximation in [13], and as many
as 583 hash tables are used in [6]. The size of each hash table
is proportional to the dataset size, since each table has as
many entries as the number of data objects in the dataset.
When the space requirement for the hash tables exceeds the
main memory size, looking up a hash bucket may require a
disk I/O, causing substantial delay to the query process.

3.3 Entropy-Based LSH Indexing
Recent theoretical work by Panigrahy [22] proposed an

entropy-based LSH scheme, which constructs its indices in
a similar manner as the basic scheme, but uses a different
query procedure. This scheme works as follows. Assuming
we know the distance Rp from the nearest neighbor p to the
query q. In principle, for every hash bucket, we can com-
pute the probability that p lies in that hash bucket (call this
the success probability of the hash bucket). Note that this
distribution depends only on the distance Rp. Given this
information, it would make sense to query the hash buckets
which have the highest success probabilities. However, per-
forming this calculation is cumbersome. Instead, Panigrahy
proposes a clever way to sample buckets from the distri-
bution given by these probabilities. Each time, a random
point p′ at distance Rp from q is generated and the bucket
that p′ is hashed to is checked. This ensures that buckets
are sampled with exactly the right probabilities. Performing
this sampling multiple times will ensure that all the buckets
with high success probabilities are probed.

However, this approach has some drawbacks: the sam-
pling process is inefficient because perturbing points and
computing their hash values are slow, and it will inevitably
generate duplicate buckets. In particular, buckets with high
success probability will be generated multiple times and
much of the computation is wasteful. Although it is pos-
sible to remember all buckets that have been checked previ-
ously, the overhead is high when there are many concurrent
2Since the total number of hash buckets may be large, only
non-empty buckets are retained using regular hashing.

queries. Further, buckets with small success probabilities
will also be generated and this is undesirable. Another draw-
back is that the sampling process requires knowledge of the
nearest neighbor distance Rp, which is difficult to choose in
a data-dependent way. If Rp is too small, perturbed queries
may not produce the desired number of objects in the candi-
date set. If Rp is too large, it would require many perturbed
queries to achieve good search quality.

We have implemented the entropy-based LSH indexing
method. With hand-tuned Rp according to our specific
datasets, the entropy-based LSH scheme can reduce the num-
ber of hash tables by a factor of 2 or 3, but increases the
query time by 30% - 210%. However, this is optimistic re-
sult since we did not know how to choose Rp independently
from the datasets.

4. MULTI-PROBE LSH INDEXING
To address the issues associated with the basic and entropy-

based LSH methods, we propose a new method called multi-
probe LSH, which uses a more systematic approach to ex-
plore hash buckets. Ideally, we would like to examine the
buckets with the highest success probabilities. We develop
a simple approximation for these success probabilities and
use it to order the hash buckets for exploration. Moreover,
our ordering of hash buckets does not depend on the nearest
neighbor distance as in the entropy-based approach. Our ex-
periments demonstrate that our approximation works quite
well. In using this technique, we are able to achieve high re-
call with substantially fewer hash tables. It is plausible that
Panigrahy’s analysis of entropy-based LSH can be adapted
to give theoretical bounds on the performance of our multi-
probe LSH scheme.

4.1 Algorithm Overview
The key idea of the multi-probe LSH method is to use a

carefully derived probing sequence to check multiple buckets
that are likely to contain the nearest neighbors of a query
object. Given the property of locality sensitive hashing, we
know that if an object is close to a query object q but not
hashed to the same bucket as q, it is likely to be in a bucket
that is “close by” (i.e., the hash values of the two buckets
only differ slightly). So our goal is to locate these “close by”
buckets, thus increasing the chance of finding the objects
that are close to q.

We define a hash perturbation vector to be a vector ∆ =
(δ1, . . . , δM ). Given a query q, the basic LSH method checks
the hash bucket g(q) = (h1(q), . . . , hM (q)). When we apply
the perturbation ∆, we will probe the hash bucket g(q)+∆.

Recall that the LSH functions we use are of the form
ha,b(v) = ba·v+b

W
c. If we pick W to be reasonably large, with

high probability, similar objects should hash to the same or
adjacent values (i.e. differ by at most 1). Hence we restrict
our attention to perturbation vectors ∆ with δi ∈ {−1, 0, 1}.

Each perturbation vector is directly applied to the hash
values of the query object, thus avoiding the overhead of
point perturbation and hash value computations associated
with the entropy-based LSH method. We will design a se-
quence of perturbation vectors such that each vector in this
sequence maps to a unique set of hash values so that we
never probe a hash bucket more than once.

Figure 1 shows how the multi-probe LSH method works.
In the figure, gi(q) is the hash value of query q in the i-th
table, (∆1, ∆2, . . . ) is a probing sequence, and gi(q) + ∆1 is



gi gLg1

g1(q)

(∆1, ∆2, ∆3, ∆4, ….)

gL(q)

probing sequence:

gi(q)
gL(q)+∆3

gi(q)+∆1

gi(q)+∆4

g1(q)+∆2

q

Figure 1: Multi-probe LSH uses a sequence of hash
perturbation vectors to probe multiple hash buck-
ets. gi(q) is the hash value of query q in the i-th
table. ∆j is a hash perturbation vector.

the new hash value after applying perturbation vector ∆1 to
gi(q); it points to another hash bucket in the table. By using
multiple perturbation vectors we locate more hash buckets
which are likely to be close to the query object’s buckets
and may contain q’s nearest neighbors. Next, we address
the issue of generating a sequence of perturbation vectors.

4.2 Step-Wise Probing
An n-step perturbation vector ∆ has exactly n coordi-

nates that are non-zero. This corresponds to probing a hash
bucket which differs in n coordinates from the hash bucket
of the query. Based on the property of locality sensitive
hashing, buckets that are one step away (i.e., only one hash
value is different from the M hash values of the query ob-
ject) are more likely to contain objects that are close to the
query object than buckets that are two steps away.

This motivates the step-wise probing method, which first
probes all the 1-step buckets, then all the 2-step buckets,
and so on. For an LSH index with L hash tables and M
hash functions per table, the total number of n-step buckets
is L ×

`
M
n

´
× 2n and the total number of buckets within s

steps is L ×
Ps

n=1

`
M
n

´
× 2n.

Figure 2 shows the distribution of bucket distances of K
nearest neighbors. The plot on the left shows the difference
of a single hash value (δi) and the plot on the right shows
the number of hash values (out of M) that differ from the
hash values of the query object (n-step buckets). As we can
see from the plots, almost all of the individual hash values
of the K nearest neighbors are either the same (δi = 0) as
that of the query object or differ by just −1 or +1. Also,
most K nearest neighbors are hashed to buckets that are
within 2 steps of the hashed bucket of the query object.

4.3 Success Probability Estimation
Using the step-wise probing method, all coordinates in

the hash values of the query q are treated identically, i.e.,
all have the same chance of being perturbed, and we con-
sider both the possibility of adding 1 and subtracting 1 from
each coordinate to be equally likely. In fact, a more refined
construction of a probing sequence is possible by consider-

xi(-1) xi(1)

fi(q)

hi(q)hi(q)-1 hi(q)+1

Figure 3: Probability of q’s nearest neighbors falling
into the neighboring slots.

ing how the hash value of q is computed. Note that each
hash function ha,b(q) = ba·q+b

W
c first maps q to a line. The

line is divided into slots (intervals) of length W numbered
from left to right and the hash value is the number of the
slot that q falls into. A point p close to q is likely to fall
in either the same slot as q or an adjacent slot. In fact,
the probability that p falls into the slot to the right (left)
of q depends on how close q is to the right (left) boundary
of its slot. Thus the position of q within its slot for each
of the M hash functions is potentially useful in determin-
ing perturbations worth considering. Next, we describe a
more sophisticated method to construct a probing sequence
that takes advantage of such information. We mention that
the idea of considering the position of q within its slot for
each hash function originated in Panigrahy’s analysis for his
entropy-based LSH scheme.

Figure 3 illustrates the probability of q’s nearest neighbors
falling into the neighboring slots. Here, fi(q) = ai · q + bi is
the projection of query q on to the line for the i-th hash
function and hi(q) = bai·q+bi

W
c is the slot to which q is

hashed. For δ ∈ {−1, +1}, let xi(δ) be the distance of q
from the boundary of the slot hi(q) + δ, then xi(−1) =
fi(q)−hi(q)×W and xi(1) = W −xi(−1). For convenience,
define xi(0) = 0. For any fixed point p, fi(p) − fi(q) is a
Gaussian random variable with mean 0 (here the probability
distribution is over the random choices of ai). The variance
of this random variable is proportional to ‖p − q‖2

2. We as-
sume that W is chosen to be large enough so that for all
points p of interest, p falls with high probability in one of the
three slots numbered hi(q), hi(q)−1 or hi(q)+1. Note that
the probability density function of a Gaussian random vari-
able is e−x2/2σ2

(scaled by a normalizing constant). Thus
the probability that point p falls into slot hi(q) + δ can be
estimated by:

Pr[hi(p) = hi(q) + δ] ≈ e−Cxi(δ)
2

where C is a constant depending on ‖p − q‖2.
We now estimate the success probability (finding a p that

is close to q) of a perturbation vector ∆ = (δ1, . . . , δM ).

Pr[g(p) = g(q) + ∆] =
MY

i=1

Pr[hi(p) = hi(q) + δi]

≈
MY

i=1

e−Cxi(δi)
2

= e−C
P

i xi((δi)
2)

This suggests that the likelihood that perturbation vector
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Figure 2: Bucket distance distribution of K nearest neighbors. Image dataset. W = 0.7, M = 16, L = 15.

∆ will find a point close to q is related to

score(∆) =
MX

i=1

xi(δi)2

Perturbation vectors with smaller scores have higher prob-
ability of yielding points near to q. Note that the score of
∆ is a function of both ∆ and the query q. This is the
basis for our new query-directed probing method, which or-
ders perturbation vectors in increasing order of their (query
dependent) scores.

4.4 Query-Directed Probing Sequence
A naive way to construct the probing sequence would be

to compute scores for all possible perturbation vectors and
sort them. However, there are L × (2M − 1) perturbation
vectors and we expect to actually use only a small fraction
of them. Thus explicitly generating all perturbation vectors
seems unnecessarily wasteful. We describe a more efficient
way to generate perturbation vectors in increasing order of
their scores.

First note that the score of a perturbation vector ∆ de-
pends only on the non-zero coordinates of ∆ (since xi(δ) = 0
for δ = 0). We expect that perturbation vectors with low
scores will have a few non-zero coordinates. In generating
perturbation vectors, we will represent only the non-zero co-
ordinates as a set of (i, δi) pairs. An (i, δ) pair represents
adding δ to the i-th hash value of q.

Given the query object q and the hash functions hi for
i = 1, . . . , M corresponding to a single hash table, we first
compute xi(δ) for i = 1, . . . , M and δ ∈ {−1, +1}. We sort
these 2M values in increasing order. Let zj denote the jth el-
ement in this sorted order. Let πj = (i, δ) if zj = xi(δ). This
represents the fact that the value xi(δ) is the jth smallest in
the sorted order. Note that since xi(−1) + xi(+1) = W ,
if πj = (i, δ), then π2M+1−j = (i, −δ). We now repre-
sent perturbation vectors as a subset of {1, . . . , 2M}, re-
ferred to as a perturbation set3. For each such pertur-
bation set A, the corresponding perturbation vector ∆A

is obtained by taking the set of coordinate perturbations
{πj |j ∈ A}. Every perturbation set A can be associated
with a score score(A) =

P
j∈A z2

j , which is exactly the
same as the score of the corresponding perturbation vector
∆A. Given the sorted order π of (i, δi) pairs and the values
3Each perturbation set corresponds to one perturbation vec-
tor, while a probing sequence contains multiple perturbation
vectors.

{1} {1,2}

{2}

{1,3}

{1,2,3}

{1,3,5}

{1,3,4}

{1,2,3,4}

{1,2,4}

{1,3,4,5}

Figure 4: Generate perturbation sequences. Verti-
cal arrows represent shift operations, and horizontal
arrows represent expand operations.

Algorithm 1 Generate T perturbation sets
A0 = {1}
minHeap insert(A0, score(A0))

for i = 1 to T do
repeat

Ai = minHeap extractMin()
As = shift(Ai)
minHeap insert(As, score(As))
Ae = expand(A)
minHeap insert(Ae, score(Ae))

until valid(Ai)
output Ai

end for

zj , j = 1, . . . , 2M , the problem of generating perturbation
vectors now reduces to the problem of generating perturba-
tion sets in increasing order of their scores.

We define two operations on a perturbation set:

• shift(A): This operation replaces max(A) by 1+max(A).
E.g. shift({1, 3, 4}) = {1, 3, 5}.

• expand(A) : This operation adds the element 1 +
max(A) to the set A. E.g. expand({1, 3, 4}) = {1, 3, 4, 5}.

Algorithm 1 shows how to generate the first T perturba-
tion sets. A min-heap is used to maintain the collection of
candidate perturbation sets such that the score of a parent
set is not larger than the score of its child set. The heap
is initialized with the set {1}. Each time we remove the
top node (set Ai) and generate two new sets shift(Ai) and
expand(Ai) (see Figure 4). Only the valid top node (set Ai)
is output. Note, for every j = 1, . . . , M , πj and π2M+1−j



represent opposite perturbations on the same coordinate.
Thus, a valid perturbation set A must have at most one of
the two elements {j, 2M + 1 − j} for every j. We also con-
sider any perturbation set containing value greater than 2M
to be invalid.

We mention two properties of the shift and expand oper-
ations which are important for establishing the correctness
of the above procedure.

1. For a perturbation set A, the scores for shift(A) and
expand(A) are greater than the score for A.

2. For any perturbation set A, there is a unique sequence
of shift and expand operations which will generate the
set A starting from {1}.

Based on these two properties, it is easy to establish the
following correctness property by induction on the sorted
order of the sets (by score).

Claim 1. The procedure described correctly generates all
valid perturbation sets in increasing order of their score.

Claim 2. The number of elements in the heap at any
point of time is one more than the number of min-heap extract-
min operations performed.

To simplify the exposition, we have described the process
of generating perturbation sets for a single hash table. In
fact, we will need to generate perturbation sets for each of
the L hash tables. For each hash table, we maintain a sep-
arate sorted order of (i, δ) pairs and zj values, represented
by πt

j and zt
j respectively. However we can maintain a single

heap to generate the perturbation sets for all tables simul-
taneously. Each candidate perturbation set in the heap is
associated with a table t. Initially we have L copies of the
set {1}, each associated with a different table. For a per-
turbation set A for table t, the score is a function of the
zt

j values and the corresponding perturbation vector ∆A is
a function of the πt

j values. When set A associated with
table t is removed from the heap, the newly generated sets
shift(A) and expand(A) are also associated with table t.

4.5 Optimized Probing Sequence Construction
The query-directed probing approach described above gen-

erates the sequence of perturbation vectors at query time by
maintaining a heap and querying this heap repeatedly. We
now describe a method to avoid the overhead of maintaining
and querying such a heap at query time. In order to do this,
we precompute a certain sequence and reduce the genera-
tion of perturbation vectors to performing lookups instead
of heap queries and updates.

Note that the generation of the sequence of perturbation
vectors can be separated into two parts: (1) generating the
sorted order of perturbation sets, and (2) mapping each per-
turbation set into a perturbation vector. The first part
requires the zj values while the second part requires the
mapping π from {1, . . . , 2M} to (i, δ) pairs. Both these are
functions of the query q.

As we will explain shortly, it turns out that we know the
distribution of the zj values precisely and can compute E[z2

j ]
for each j. This motivates the following optimization: We
approximate the z2

j values by their expectations. Using this
approximation, the sorted order of perturbation sets can be
precomputed (since the score of a set is a function of the
z2

j values). The generation process is exactly the same as

described in the previous subsection, but uses the E[z2
j ] val-

ues instead of their actual values. This can be done inde-
pendently of the query q. At query time, we compute the
mapping πt

j as a function of query q (separately for each
hash table t). These mappings are used to convert each per-
turbation set in the precomputed order into L perturbation
vectors, one for each of the L hash tables. This precom-
putation reduces the query time overhead of dynamically
generating the perturbation sets at query time.

To complete the description, we need to explain how to
obtain E[z2

j ]. Recall that the zj values are the xi(δ) val-
ues in sorted order. Note xi(δ) is uniformly distributed in
[0, W ] and further xi(−1) + xi(+1) = W . Since each of the
M hash functions is chosen independently, the xi(δ) values
are independent of the xj(δ′) values for j 6= i. The joint
distribution of the zj values for j = 1, . . . , M is then the fol-
lowing: pick M numbers uniformly and at random from the
interval [0, W/2]. zj is the j-th largest number in this set.
This is a well studied distribution, referred to as the order
statistics of the uniform distribution in [0, W ]. Using known
facts about this distribution, we get that for j ∈ {1, . . . , M},
E[zj ] = j

2(M+1)W and E[z2
j ] = j(j+1)

4(M+1)(M+2)W
2. Further,

for j ∈ {M + 1, . . . , 2M}, E[z2
j ] = E[(W − z2M+1−j)2] =

W 2
“
1 − 2M+1−j

M+1 + (2M+1−j)(2M+2−j)
4(M+1)(M+2)

”
. These values are

used in determining the precomputed order of perturbation
sets as described earlier.

5. EXPERIMENTAL SETUP
This section describes the configurations of our experi-

ments, including the evaluation datasets, evaluation bench-
marks, evaluation metrics, and some implementation details.

5.1 Evaluation Datasets
We have used two datasets in our evaluation. The dataset

sizes are chosen such that the index data structure of the
basic LSH method can entirely fit into the main memory.
Since the entropy-based and multi-probe LSH methods re-
quire less memory than the basic LSH method, we will be
able to compare the in-memory indexing behaviors of all
three approaches. The two datasets are:

Image Data: The image dataset is obtained from Stan-
ford’s WebBase project [24], which contains images crawled
from the web. We only picked images that are of JPEG for-
mat and are larger than 64 × 64 in size. The total number
of images picked is 1.3 million. For each image, we use the
extractcolorhistogram tool from the FIRE image search en-
gine [11, 9] to extract a 64-dimensional color histogram.

Audio Data: The audio dataset comes from the LDC
SWITCHBOARD-1 [25] collection. It is a collection of about
2400 two-sided telephone conversations among 543 speakers
from all areas of the United States. The conversations are
split into individual words based on the human transcrip-
tion. In total, the audio dataset contains 2.6 million words.
For each word segment, we then use the Marsyas library [26]
to extract feature vectors by taking a 512-sample sliding win-
dow with variable stride to obtain 32 windows for each word.
For each of the 32 windows, we extract the first six MFCC
parameters, resulting in a 192-dimensional feature vector for
each word.

Table 1 summarizes the number of objects in each dataset



Dataset #Objects #Dimension Total Size
Image 1,312,581 64 336 MB
Audio 2,663,040 192 2.0 GB

Table 1: Evaluation Datasets.

and the dimensionality of the feature vectors.

5.2 Evaluation Benchmarks
For each dataset, we created an evaluation benchmark by

randomly picking 100 objects as the query objects, and for
each query object, the ground truth (i.e., the ideal answer)
is defined to be the query object’s K nearest neighbors (not
including the query object itself), based on the Euclidean
distance of their feature vectors. Unless otherwise specified,
K is 20 in our experiments.

5.3 Evaluation Metrics
The performance of a similarity search system can be mea-

sured in three aspects: search quality, search speed, and
space requirement. Ideally, a similarity search system should
be able to achieve high-quality search with high speed, while
using a small amount of space.

Search quality is measured by recall. Given a query object
q, let I(q) be the set of ideal answers (i.e., the k nearest
neighbors of q), let A(q) be the set of actual answers, then

recall =
|A(q) ∩ I(q)|

|I(q)|

In the ideal case, the recall score is 1.0, which means all the
k nearest neighbors are returned. Note that we do not need
to consider precision here, since all the candidate objects
(i.e., objects found in one of the checked hash buckets) will
be ranked based on their Euclidean distances to the query
object and only the top k candidates will be returned.

For comparison purposes, we will also present search qual-
ity results in terms of error ratio (or effective error), which
measures the quality of approximate nearest neighbor search.
As defined in [13]:

error ratio =
1

|Q|K
X
q∈Q

KX
k=1

dLSHk

d∗
k

where dLSHk is the k-th nearest neighbor found by a LSH
method, and d∗

k is the true k-th nearest neighbor. In other
words, it measures how close the distances of the K near-
est neighbors found by LSH are compared to the exact K
nearest neighbors’ distances.

Search speed is measured by query time, which is the time
spent to answer a query. Space requirement is measured
by the total number of hash tables needed, and the total
memory usage.

All performance measures are averaged over the 100 queries.
Also, since the hash functions are randomly picked, each ex-
periment is repeated 10 times and the average is reported.

5.4 Implementation Details
We have implemented the three different LSH methods

as discussed in previous sections: basic, entropy, and multi-
probe. For the multi-probe LSH method, we have imple-
mented both step-wise probing and query-directed probing.

The default probing method for multi-probe LSH is query-
directed probing. For all the hash tables, only the object
ids are stored in the hash buckets. A separate data struc-
ture stores all the vectors, which can be accessed via object
ids. We use an object id bitmap to efficiently union objects
found in different hash buckets. As a baseline comparison,
we have also implemented the brute-force method, which
linearly scans through all the feature vectors to find the k
nearest objects. All methods are implemented using the C
programming language. Also, each method reads all the
feature vectors into main memory at startup time.

We have experimented with different parameter values for
the LSH methods and picked the ones that give best per-
formance. In the results, unless otherwise specified, the de-
fault values are W = 0.7, M = 16 for the image dataset and
W = 24.0, M = 11 for the audio dataset. For the entropy-
based LSH method, the perturbation distance Rp = 0.04 for
the image dataset and Rp = 4.0 for the audio dataset.

The evaluation is done on a PC with one dual-processor
Intel Xeon 3.2GHz CPU with 1024KB L2 cache. The PC
system has 6GB of DRAM and a 160GB 7,200RPM SATA
disk. It runs the Linux operating system with a 2.6.9 kernel.

6. EXPERIMENTAL RESULTS
In this section, we report the evaluation results of the

three LSH methods using the image dataset and the au-
dio dataset. We are interested in answering the question
about the space requirements, search time and search qual-
ity trade-offs for different LSH methods.

6.1 Main Results
The main result is that the multi-probe LSH method is

much more space efficient than the basic LSH and entropy-
based LSH methods to achieve various search quality levels
and it is more time efficient than the entropy-based LSH
method.

Table 2 shows the average results of the basic LSH, entropy-
based LSH and multi-probe LSH methods using 100 random
queries with the image dataset and the audio dataset. We
have experimented with different number of hash tables L
(for all three LSH methods) and different number of probes
T (i.e., number of extra hash buckets to check, for the multi-
probe LSH method and the entropy-based LSH method).
For each dataset, the table reports the query time, the er-
ror ratio and the number of hash tables required, to achieve
three different search quality (recall) values. .

The results show that the multi-probe LSH method is sig-
nificantly more space efficient than the basic LSH method.
For both the image data set and the audio data set, the
multi-probe LSH method reduces the number of hash tables
by a factor of 14 to 18. In all cases, the multi-probe LSH
method has similar query time to the basic LSH method.

The space efficiency implication is dramatic. Since each
hash table entry consumes about 16 bytes in our implemen-
tation, 2 gigabytes of main memory can hold the index data
structure of the basic LSH method for about 4-million im-
ages to achieve a 0.93 recall. On the other hand, when the
same amount of main memory is used by the multi-probe
LSH indexing data structures, it can deal with about 60-
million images to achieve the same search quality.

The results in Table 2 also show that the multi-probe LSH
method is substantially more space and time efficient than
the entropy-based approach. For the image dataset, the



recall method error query #hash space
ratio time (s) tables ratio

basic 1.027 0.049 44 14.7
0.96 entropy 1.023 0.094 21 7.0

multi-probe 1.015 0.050 3 1.0
basic 1.036 0.044 30 15.0

0.93 entropy 1.044 0.092 11 5.5
multi-probe 1.053 0.039 2 1.0

basic 1.049 0.029 18 18.0
0.90 entropy 1.036 0.078 6 6.0

multi-probe 1.029 0.031 1 1.0

recall method error query #hash space
ratio time (s) tables ratio

basic 1.002 0.191 69 13.8
0.94 entropy 1.002 0.242 44 8.8

multi-probe 1.002 0.199 5 1.0
basic 1.003 0.174 61 15.3

0.92 entropy 1.003 0.203 25 6.3
multi-probe 1.002 0.163 4 1.0

basic 1.004 0.133 49 16.3
0.90 entropy 1.003 0.181 19 6.3

multi-probe 1.003 0.143 3 1.0

(a) image dataset (b) audio dataset

Table 2: Search performance comparison of different LSH methods: multi-probe LSH is most efficient in
terms of space usage and time while achieving the same recall score as other LSH methods.
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Figure 5: Number of hash tables (in log scale) required by different LSH methods to achieve certain search
quality (T = 100 for both multi-probe LSH and entropy-based LSH): multi-probe LSH achieves higher recall
with fewer number of hash tables.
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Figure 6: Number of probes (in log scale) required by multi-probe LSH and entropy-based LSH to achieve
certain search quality (L = 10 for both image and audio): multi-probe LSH method uses much fewer number
of probes.
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Figure 7: Number of duplicate buckets checked by the entropy-based LSH method: a large fraction of buckets
checked by entropy-based LSH are duplicate buckets, especially for smaller L.

multi-probe LSH method reduces the number of hash tables
required by the entropy-based approach by a factor of 7.0,
5.5, and 6.0 respectively for the three recall values, while
reducing the query time by half. For the audio data set,
multi-probe LSH reduces the number of hash tables by a
factor of 8.8, 6.3, and 6.3 for the three recall values, while
using less query time.

Figure 5 shows the detailed relationship between search
quality and the number of hash tables for all three indexing
approaches. Here, for easier comparison, we use the same
number of probes (T = 100) for both multi-probe LSH and
entropy-based LSH. It shows that for most recall values, the
multi-probe LSH method reduces the number of hash tables
required by the basic LSH method by an order of magnitude.
It also shows that the multi-probe method is better than the
entropy-based LSH method by a significant factor.

6.2 Multi-Probe vs. Entropy-Based Methods
Although both multi-probe and entropy-based methods

visit multiple buckets for each hash table, they are very dif-
ferent in terms of how they probe multiple buckets. The
entropy-based LSH method generates randomly perturbed
objects and use LSH functions to hash them to buckets,
whereas the multi-probe LSH method uses a carefully de-
rived probing sequence based on the hash values of the
query object. The entropy-based LSH method is likely to
probe previously visited buckets, whereas the multi-probe
LSH method always visits new buckets.

To compare the two approaches in detail, we are interested
in answering two questions. First, when using the same
number of hash tables, how many probes does the multi-
probe LSH method need, compared with the entropy-based
approach? As we can see in Figure 6 (note that the y axis
is in log scale of 2), multi-probe LSH requires substantially
fewer number of probes.

Second, how often does the entropy-based approach probe
previously visited buckets (duplicate buckets)? As we can
see in Figure 7, the number of duplicate buckets is over 900
for the image dataset and over 700 for the audio dataset,
while the total number of buckets checked is 1000. Such
redundancy becomes worse with fewer hash tables.

6.3 Query-Directed vs. Step-Wise Probing
This subsection presents the experimental results of the

differences between the query-directed and step-wise prob-
ing sequences for the multi-probe LSH indexing method.

The results show that query-directed probing sequence is
far superior to the step-wise probing sequence.

First, with similar query times, the query-directed prob-
ing sequence requires significantly fewer hash tables than
the step-wise probing sequence. Table 3 shows the space
requirements of using the two probing sequences to achieve
three recall precisions with similar query times. For the
image dataset, the query-directed probing sequence reduces
the number of hash tables by a factor of 5, 10 and 10 for the
three cases. For the audio dataset, it reduces the number of
hash tables by a factor of 5 for all three cases.

Second, with the same number of hash tables, the query-
directed probing sequence requires far fewer probes than the
step-wise probing sequence to achieve the same recall preci-
sions. Figure 8 shows the relationship between the number
of probes and recall precisions for both approaches when
they use the same number of hash tables (10 for image data
and 15 for audio data). The results indicate that the query-
directed probing sequence can reduce the number of probes
typically by an order of magnitude for various recall values.

The main reason for the big gap between the two se-
quences is that many similar objects are not in the buckets 1-
step away from the hashed buckets. In fact, some are several
steps away from the hashed buckets. The step-wise probing
visits all 1-step buckets, then all 2-step buckets, and so on.
The query-directed probing visits buckets with high success
probability first. Figure 9 shows the number of n-step (n
= 1, 2, 3, 4) buckets picked by the query-directed probing
method, as a function of the total number of probes. The
figure clearly shows that many 2,3,4-step buckets are picked
before all the 1-step buckets are picked. For example, for
the image dataset, of the first 200 probes, the number of
1-step, 2-step, 3-step and 4-step probes is 50, 90, 50, and
10, respectively.

6.4 Sensitivity Results
By probing multiple hash buckets per table, the multi-

probe LSH method can greatly reduce the number of hash
tables while finding desired similar objects. A sensitivity
question is whether this approach generates a larger candi-
date set than the other approaches or not. Table 4 shows
the ratio of the average candidate set size to the dataset
size for the cases in Table 2. The result shows that the
multi-probe LSH approach has similar ratios to the basic



#probes recall error query #hash
ratio time(s) tables

1-step 320 0.933 1.027 0.042 10
query-directed 400 0.937 1.020 0.040 1

1,2-step 5120 0.960 1.017 0.071 10
query-directed 450 0.960 1.024 0.060 2

1,2,3-step 49920 0.969 1.012 0.132 10
query-directed 600 0.969 1.019 0.064 2

#probes recall error query #hash
ratio time(s) tables

1-step 330 0.885 1.004 0.224 15
query-directed 160 0.885 1.004 0.193 3

1,2-step 3630 0.947 1.001 0.462 15
query-directed 450 0.947 1.001 0.323 3

1,2,3-step 23430 0.973 1.001 0.724 15
query-directed 900 0.974 1.001 0.444 3

(a) image dataset (b) audio dataset

Table 3: Query-directed probing vs. step-wise probing in multi-probe LSH: query-directed probing uses
fewer number of hash tables, shorter query time to achieve the same search quality as step-wise probing.
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Figure 8: Number of probes required (in log scale) using step-wise probing and query-directed probing to
achieve certain search quality: query-directed probing requires substantially fewer number of probes.
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Figure 9: Number of n-step perturbation sequences picked by query-directed probing: many 2,3,4-step
sequences are picked before all 1-step sequences are picked.

and entropy-based LSH approaches4.
In all experiments presented above, we have used K = 20

(number of nearest neighbors). Another sensitivity question
is whether the search quality of the multi-probe LSH method
is sensitive to different K values. Figure 10 shows that the
search quality is not so sensitive to different K values. For
the image dataset, there are some differences with differ-
ent K values when the number of probes is small. As the
number of probes increases, the sensitivity reduces. For the
audio dataset, the multi-probe LSH achieves similar search
qualities for different K values.

We suspect that the different sensitivity results in the two

4Since multi-probe LSH achieves higher search quality with
fewer hash tables, it can use “tighter” buckets, thus reducing
the candidate set size even further.

datasets are due to the characteristics of the datasets. As
shown in Table 2, for the image data, a 0.90 recall corre-
sponds to a 1.049 error ratio, while for the audio data, the
same 0.90 recall corresponds to a 1.004 error ratio. This
means that the audio objects are much more densely pop-
ulated in the high-dimensional space. In other words, if
a query object q’s nearest neighbor is at distance r, there
are many objects that lie within cr distance from q. This
makes the approximate nearest neighbor search problem eas-
ier, but makes high recall values more difficult. However, for
a given K, the multi-probe LSH method can effectively re-
duce the space requirement while achieving desired search
quality with more probes.

7. RELATED WORK
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Figure 10: Recall of multi-probe LSH for different K (number of nearest neighbors): multi-probe LSH
achieves similar search quality for different K values.

method image audio
recall C/N (%) recall C/N (%)

basic 0.96 4.4 0.94 6.3
entropy 0.96 4.9 0.94 6.8

multi-probe 0.96 5.1 0.94 7.1
basic 0.93 3.3 0.92 5.7

entropy 0.93 3.9 0.92 5.9
multi-probe 0.93 4.1 0.92 6.0

basic 0.90 2.6 0.90 5.0
entropy 0.90 3.1 0.90 5.6

multi-probe 0.90 3.0 0.90 5.3

Table 4: Percentage of objects examined using dif-
ferent LSH methods (C is candidate set size, N is
dataset size): multi-probe LSH has similar filter ra-
tio as other LSH methods.

The similarity search problem is closely related to the
nearest neighbor search problem, which has been studied ex-
tensively. A number of indexing data structures have been
devised for nearest neighbor search; examples include R-
tree [14], K-D tree [4], and SR-tree [18]. These data struc-
tures are capable of supporting similarity queries, but do
not scale satisfactorily to large, high-dimensional datasets.
The exact nearest neighbor problem suffers from the “curse
of dimensionality” – i.e. either the search time or the search
space is exponential in the number of dimensions, d [10, 20].
Several approximation-based indexing techniques have been
proposed in the literature, such as VA-file [27], A-tree [23],
and AV-tree [2]. These techniques use vector approxima-
tions or bounding rectangle approximations to prune search
space. Much progress has been made on solving the Approx-
imate Nearest-Neighbor (ANN) problem. The objective is
to find points whose distance from the query point is at most
1 + ε times the exact nearest neighbor’s distance. Due to
the limited space, we can not give an extensive review of
previous searching and indexing techniques. Please see [7,
15, 12] for some survey. Here, we focus on locality sensitive
hashing techniques that are most relevant to our work.

Locality sensitive hashing (LSH), introduced by Indyk
and Motwani, is the best-known indexing method for ANN
search. Theoretical lower bounds for LSH have also been
studied [21, 1]. The basic LSH indexing method [17] only
checks the buckets to which the query object is hashed and
usually requires a large number of hash tables (hundreds) to

achieve good search quality. Bawa et al. proposed the LSH
Forest indexing method [3] which represents each hash table
by a prefix tree so the number of hash functions per table
can be adapted for different approximation distances. How-
ever, this method does not help reduce the number of hash
tables for a given approximation distance. In a theoretical
study, Panigrahy recently proposed an entropy-based LSH
scheme [22], which tries to reduce the number of hash tables
by using multiple perturbed queries. In practice, it is dif-
ficult to generate perturbed queries in a data-independent
way and most hashed buckets by the perturbed queries are
redundant. The multi-probe LSH method proposed in this
paper is inspired by but quite different from the entropy-
based LSH method. Instead of generating perturbed queries,
our method computes a non-overlapped bucket sequence, ac-
cording to the probability of containing similar objects.

8. CONCLUSIONS
This paper presents the multi-probe LSH indexing method

for high-dimensional similarity search, which uses carefully
derived probing sequences to probe multiple hash buckets in
a systematic way. Our experimental results show that the
multi-probe LSH method is much more space efficient than
the basic LSH and entropy-based LSH methods to achieve
desired search accuracy and query time. The multi-probe
LSH method reduces the number of hash tables of the basic
LSH method by a factor of 14 to 18 and reduces that of the
entropy-based approach by a factor of 5 to 8.

We have also shown that although both multi-probe and
entropy-based LSH methods trade time for space, the multi-
probe LSH method is much more time efficient when both
approaches use the same number of hash tables. Our ex-
periments show that the multi-probe LSH method can use
ten times fewer number of probes than the entropy-based
approach to achieve the same search quality.

We have developed two probing sequences for the multi-
probe LSH method. Our results show that the query-directed
probing sequence is far superior to the simple, step-wise
sequence. By estimating success probability, the query-
directed probing sequence typically uses an order-of-magnitude
fewer probes than the step-wise probing approach. Although
the analysis presented in this paper is for a specific LSH
function family, the general technique applies to other LSH
function families as well.

This paper focuses on comparing the basic, entropy-based



and multi-probe LSH methods in the case that the index
data structure fits in main memory. Our results indicate
that 2GB memory will be able to hold a multi-probe LSH
index for 60 million image data objects, since the multi-
probe method is very space efficient. However, since our
dataset sizes in the experiments are chosen to fit the index
data structure of each of the three methods (basic, entropy-
based and multi-probe) into main memory, we have not
experimented the multi-probe LSH indexing method with
a 60-million image dataset. For even larger datasets, an
out-of-core implementation of the multi-probe LSH method
may be worth investigating. Although the multi-probe LSH
method can use the LSH forest method to represent its hash
table data structure to exploit its self-tuning features, our
implementation in this paper uses the basic LSH data struc-
ture for simplicity. A comparison of multi-probe LSH and
other indexing techniques would also be helpful. We plan to
study these issues in the near future.
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