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ABSTRACT

Although Locality-Sensitive Hashing (LSH) is a promising
approach to similarity search in high-dimensional spaces, it
has not been considered practical partly because its search
quality is sensitive to several parameters that are quite data
dependent. Previous research on LSH, though obtained in-
teresting asymptotic results, provides little guidance on how
these parameters should be chosen, and tuning parameters
for a given dataset remains a tedious process.

To address this problem, we present a statistical perfor-
mance model of Multi-probe LSH, a state-of-the-art vari-
ance of LSH. Our model can accurately predict the average
search quality and latency given a small sample dataset.
Apart from automatic parameter tuning with the perfor-
mance model, we also use the model to devise an adaptive
LSH search algorithm to determine the probing parameter
dynamically for each query. The adaptive probing method
addresses the problem that even though the average perfor-
mance is tuned for optimal, the variance of the performance
is extremely high. We experimented with three different
datasets including audio, images and 3D shapes to evaluate
our methods. The results show the accuracy of the proposed
model: the recall errors predicted are within 5% from the
real values for most cases; the adaptive search method re-
duces the standard deviation of recall by about 50% over
the existing method.
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1. INTRODUCTION
The K nearest neighbors (K-NN) problem is a common

formulation of many similarity search tasks such as content-
based retrieval of multimedia data[14]. Although the prob-
lem has been studied extensively for several decades, no sat-
isfactory general solution is known. The exact K-NN prob-
lem suffers from the curse of dimensionality, i.e. either the
search time or space requirement is exponential in D, the
number of dimensions [6, 16]. Both theory and practice
have shown that traditional tree based indexing methods,
e.g. [9, 3, 11], degenerate into linear scan in sufficiently high
dimensions[21]. As a result, various approximate algorithms
have been proposed to trade precision for speed. One of the
most promising approximate algorithms is Locality Sensitive
Hashing (LSH)[10, 8, 4].

The key insight behind LSH is that it is possible to con-
struct hash functions such that points close to each other
in some metric space have the same hash value with higher
probability than do points that are far from one another.
Given a particular metric and corresponding hash family,
LSH maintains a number of hash tables containing the points
in the dataset. An approximate solution to the K-NN query
may be found by hashing the query point and scanning the
buckets which the query point is hashed to.

As originally proposed, LSH suffers from two drawbacks.
First, it requires significant space, usually hundreds of hash
tables to produce good approximation. The recently pro-
posed Multi-probe LSH algorithm[15] addresses this prob-
lem in practice, showing a space reduction of more than
90% in experiments. The basic idea (building on [18]) is to
probe several buckets in the same hash table — additional
buckets probed are those with addresses close to the hash
value of the query. The second significant drawback of LSH
is that its performance is very sensitive to several parame-
ters which must be chosen by the implementation. A pre-
viously proposed scheme, LSH Forest[2], partially addressed
this problem by eliminating the need to fix one of the pa-
rameters; however, the implementation is still left with the
issue of finding good values for others; and there is a similar
problem, as in Multi-probe LSH, to determine how many
nodes in the trees to visit. The process of parameter tun-
ing is both tedious and a serious impediment for practical
applications of LSH. Current research on LSH and its vari-
ants provides little guidance on how these parameter values
should be chosen.

This paper presents a performance model of Multi-probe
LSH. Given a particular data type, a small sample dataset
and the set of LSH parameters, the model can accurately



predict the query quality and latency, making the parameter
tuning problem easy. The optimal setting of parameters
depends on the dataset of interest, which, in practice, might
not be available at implementation time. Our method does
not require the full dataset. We identify relevant statistical
properties of the data, infer them from a sample dataset
and extrapolate them to larger datasets. We show that our
model is an accurate predictor of empirical performance.

In addition, we use our performance model to devise an
adaptive version of Multi-probe LSH with superior prop-
erties. Both our analysis and experiments show that the
performance of LSH on a query point depends not only on
the overall distribution of the dataset, but also on the local
geometry in the vicinity of the particular query point. The
fixed number of probes used in the original Multi-probe LSH
may be insufficient for some queries and larger than neces-
sary for others. Our adaptive probing method only probes
enough buckets to achieve the required search result quality.

Our evaluation with three different datasets — images,
audio, and 3D shapes — shows that our analytical model is
accurate for predicting performance and thus reliable for pa-
rameter tuning. Furthermore, our adaptive probing method
not only reduces the variance in search performance between
different queries, but also potentially reduces the query la-
tency.

2. BACKGROUND

2.1 Basic LSH
The K Nearest Neighbor (K-NN) problem is as follows:

given a metric space 〈M, d〉 and a set S ⊆ M, maintain an
index so that for any query point v ∈ M, the set I(v) of K
points in S that are closest to v can be quickly identified. In
this paper we assume the metric space is the D-dimensional
Euclidean space R

D, which is the most commonly used met-
ric space.

Indyk and Motwani introduced LSH as a probabilistic
technique suitable for solving the approximate K-NN prob-
lem [10, 8]. The original LSH hash function families were
suitable only for Hamming space, but more recent families
based on stable distributions and suitable for Lp, p ∈ (0, 2]
have been devised [4].

In our case of R
D with L2 distance, the LSH family is

defined as follows [4]:

H(v) = 〈h1(v), h2(v), . . . , hM (v)〉 (1)

hi(v) = ⌊ai · v + bi
W

⌋, i = 1, 2, . . . ,M (2)

where ai ∈ R
D is a vector with entries chosen independently

from the Gaussian distribution N(0, 1) and bi is drawn from
the uniform distribution U [0,W ). For different i, ai and
bi are sampled independently. The parameters M and W
control the locality sensitivity of the hash function. The
index data structure is L hash tables with independent hash
functions, and the query algorithms is to scan the buckets
which the query point is hashed to. As a data point might
collide with the query point in more than one hash tables,
a bitmap is maintained for each query to record the points
scanned, so each data point is scanned at most once.

One drawback of the basic LSH scheme is that in practice
it requires a large number of hash tables (L) to achieve good
search quality. Panigrahy [18] proposed an entropy-based
LSH scheme which reduced the required number of hash

tables by using both the original query point and randomly
perturbed, nearby points as additional queries. Lv, et al.
[15] used a similar perturbation-based approach to develop
Multi-probe LSH, which achieves the best results known so
far. The study of this paper is based on Multi-probe LSH,
which we review briefly below.

2.2 Multi-Probe LSH
Multi-probe LSH[15] is the current state of the art in LSH

based schemes for nearest neighbor search. This scheme
seeks to make better use of a smaller number of hash tables
(L). To accomplish this goal, it not only considers the main
bucket, where the query point falls, but also examines other
buckets that are “close” to the main bucket.

For a single hash table, let v be the query point and H(v)
its hash. Recall that H(v) consists of the concatenation of
M integral values, each produced by an atomic hash function
on v. Buckets corresponding to hash values that differ from
H(v) by ±1 in one or several components are also likely
to contain points near the original query point v. Buckets
corresponding to hash values that differ from H(v) by more
than 1 in certain component are much less likely to contain
points of interest[15], and are not considered.

Multi-probe LSH is to systematically probe those buckets
that are closest to main bucket. For concreteness, consider
the scenario shown in Figure 1 where M = 3. In this exam-
ple, the query point is hashed to 〈5, 3, 9〉. In addition to ex-
amining this main bucket, the algorithm also examines other
buckets such as 〈6, 3, 9〉, 〈5, 2, 9〉 and 〈5, 3, 8〉, which are close
to the main bucket. Note that the closer the query point’s
hash value is to the boundary of the bin, the more likely
it is that the bin bordering that boundary contains nearest
neighbors of the query. In the above example, 〈5, 2, 9〉 is
the most promising of the additional buckets and the first
of them to be examined.

In general, given a query point v and the main bucket π0 =
〈h1, . . . , hM 〉, let the probing sequence be {π0, π1, . . . , πt, . . .},
where πt = 〈h1 + δt,1, . . . , hM + δt,M 〉 and 〈δt,1, . . . , δt,M 〉 is
called the perturbation vector for step t. Because the chance
of Kth nearest neighbor falling into buckets with |δt,i| ≥ 2
is very small, we restrict δt,i to the set {−1, 0,+1} in or-
der to simplify the algorithm. The buckets in the probing
sequence are arranged in increasing order of the following
query dependent score:

score(πt) =
M

X

i=1

∆2
i (δt,i) (3)

where ∆i(δ) = δ · [hi +
1

2
(1 + δ) − ai · v + bi

W
]. (4)

∆i(±1) is the distance from ith projection to the right/left
window boundary for each i perturbed, and 0 for others, as
illustrated in Figure 1.

Generating the probing sequence for each query is itself
time consuming and so Multi-probe LSH uses a pre-calculated
template probing sequence generated with the expected val-
ues of ∆i(±1) to approximate the query dependent probing
sequence. For a specific query, its hash function compo-
nents are ranked according to the ∆i(±1) values, and then
adjusted according to the template probing sequence to pro-
duce the actual probing sequence used for the query. The
precise details can be found in [15].

The length of the probing sequence T used by the algo-
rithm is a further parameter to be tuned. Larger value of
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Figure 1: Illustration of LSH. The hash function
consists of three components, each calculated by
random projection and quantization. The point v
is hashed to H(v) = 〈5, 3, 9〉.

T allow us to achieve the same quality of results with fewer
hash tables. However, the likelihood of finding more relevant
results falls rapidly as T increases. A very large value of T
will only increase the candidate set size without significantly
improving the quality of the results returned.

In summary, to achieve good performance from Multi-
probe LSH, one needs to carefully tune four parameters: the
window size W , the number of hash function components
M , the number of hash tables L and the length of probing
sequence T .

2.3 Other Related Works
A closely related work is LSH Forest [2], which represents

each hash table by a prefix tree such that the number of hash
functions per table can be adjusted. As new data arrive, the
hash tables can grow on the fly. For a leaf node in the LSH
forest, the depth of the node corresponds to parameter M in
the basic LSH scheme. The method was designed for ham-
ming distance. Although the idea may apply to L2 distance
with p-stable distribution-based hash functions, it must tune
other parameters. Our data distribution modeling approach
could be useful for this purpose.

The idea of intrinsic dimension has been used to ana-
lyze the performance of spatial index structures such as R-
Tree [17]. The concepts in the paper have inspired our data
model work, especially in the parameters of the gamma dis-
tribution and power law for modeling the distribution of
distances.

3. ANALYTICAL MODEL
This section presents the performance model of Multi-

probe LSH assuming fixed parameters, i.e. W,M,L and T .
This model requires fitting a series of distributions that are
dataset specific. Although there is not a universal family of
such distributions, our experience indicates that the gamma
distribution is commonly followed by multimedia data. For
this special case, we then show how to extract statistical
parameters from a small sample dataset to plug into the
performance model.

Table 1 summarizes the notations we use in this paper.

3.1 Modeling Multi-Probe LSH
The first step is to formalize the performance measures.

There are two aspects of performance — quality and cost.
We use the percentage of true K-NNs found, or recall, to
capture the quality of the query result. Formally, let v be a

S, N = |S| dataset and its size.
I(v) true K-NNs of v.
A(v) candidate set to be scanned.
Xk distance to kth NN.
X distance to an arbitrary point.

H(·)=〈hi(·)〉i=1..M the LSH function (1).
W LSH window size (2).
M # components in the LSH function.
L # hash tables maintained.
T # bins probed in each table.

Bt(,l) tth bucket probed (in lth table).
∆i(±1) distance to window boundary (4).

{πt =〈hi+δt,i〉i=1..M} the probing sequence.
ηW,δ(·, ·) hash collision probability, see (12).

φ(·) p.d.f. of Gaussian distribution N(0, 1).

Table 1: Notation summary

query point, I(v) be the set of true K-NNs and A(v) be the
candidate set, which is the union of all the buckets probed.
The approximate query result is the K elements of A(v)
closest to v (or the entire A(v) if there are less than K
points). Recall ρ is the percentage of I(v) included in A(v),
or the following:

ρ(v) =
|A(v) ∩ I(v)|

|I(v)| . (5)

We rank A(v) and only return the best K points, thus pre-
cision is exactly the same as recall.

For cost, we are only interested in the online query time,
as the space overhead and offline construction time are both
linear to the dataset size and the number of hash tables (L).
The main part of query processing is scanning through the
candidate set and maintaining a top-K heap. Because most
candidate points, being too far away from the query, are
thrown away immediately after distance evaluation, heap
updates rarely happen. Therefore, the query time is mostly
spent on computing distances, and is thus proportional to
the size of the candidate set. As a result, the percentage
of the whole dataset scanned by LSH is a good indicator of
query time. This is further justified by experiments in Sec-
tion 5. We thus define selectivity τ (v) = |A(v)|/N , the size
ratio between the candidate set and the whole dataset, as
the measure of query time. We use the average recall and se-
lectivity as overall performance measure. Our performance
model is to estimate these two values by their mathematical
expectation: ρ = E[ρ(v)] and τ = E[τ (v)]. If not otherwise
stated, expectations in this paper are taken over the ran-
domness of the data as well as the random parameters of
the LSH functions, i.e. ai and bi in (2).

The probability that an arbitrary point u in the dataset
is found in the candidate set A(v) is determined by its dis-
tance to the query point v. We represent this distance with
random variable X, and define the probability as a function
of X, which we also call recall and use the same symbol ρ:

ρ(X) = Pr[u ∈ A(v) | ‖u− v‖ = X ]. (6)

With the above definition of ρ(.) as a function of distance,
the expected selectivity can be written as

τ = E[τ (v)] = E

2

6

6

4

1

|S|
X

x=||u−v||
u∈S

ρ(x)

3

7

7

5

= E[ρ(X)]. (7)



The same reasoning applies to the nearest neighbors. Let
Xk = ||Ik(v) − v|| be the distance between v and its kth
nearest neighbor, then ρ(Xk) is the recall of v on its kth
nearest neighbor, and the overall expected recall can be ob-
tained by taking the average

ρ = E[ρ(v)] =
1

K

K
X

k=1

E[ρ(Xk)]. (8)

So far the modeling problem is reduced to finding the dis-
tributions of X and Xk, which we will address in the next
subsection, and finding the detailed expression of ρ(·), as
explained below.

To obtain the expression of ρ(·), we need to decompose
the candidate set A(v) into the individual buckets probed.
Let Bl,t(v), 1 ≤ l ≤ L, 1 ≤ t ≤ T be buckets in the prob-
ing sequences of the L hash tables. Because the hash tables
are maintained by the same algorithm in parallel, with hash
functions sampled from the same family, the subscript l actu-
ally does not matter when only probabilities are considered,
thus we use Bt(v) to denote the tth bucket for arbitrary l.
It is obvious that A(v) =

S

l,t Bl,t(v). Let u be an arbitrary

point such that X = ‖u− v‖, then

ρ(X) = 1−Pr[u /∈
[

l,t

Bl,t(v)|] = 1−
(

T
Y

t=1

Pr[u /∈ Bt(v)]

)L

.

(9)
Recall that the corresponding hash function of the Bt in the
probing sequence is 〈h1(v) + δt,1(v), . . . , hM (v) + δt,M (v)〉.
Thus

u /∈ Bt(v) ⇔ ¬
^

1≤i≤M

hi(u) = hi(v) + δt,i(v)

and

Pr[u /∈ Bt(v)] = 1−
Y

1≤i≤M

Pr[hi(u) = hi(v)+ δt,i(v)]. (10)

The probability Pr[hi(u) = hi(v) + δt,i(v)] depends on the
perturbation value δt,i(v) as well as v’s distance to the cor-
responding window boundary on the ith projection. The de-
tailed expression depends on the specific atomic hash func-
tion, which is (2) in our case for L2 distance. We directly
give the formula here:

Pr[hi(u) = hi(v) + δ] = ηW,δ [X,∆i(δ)] (11)

where ηW,δ(d, z) =

(

1
d

R W

0
φ( z−x

d
)dx if δ = 0

1
d

R W

0
φ( z+x

d
)dx if δ = ±1

(12)

where φ(·) is the probability density function of the standard
Gaussian distribution. Because ηW,0(d, z) occurs frequently,
we use the following approximation to simplify computation:

ηW,0(d, z) ∼ Ez∈[0,W )[ηW,0(d, z)]. (13)

The values ∆i(δ) are functions of the query v and the hash
function parameters. We make some approximations to sim-
plify calculations by taking advantage of the template prob-
ing sequence. First, note that the actual order of the M
components of the hash function does not affect the eval-
uation of (10). Without loss of generality, we can assume
that the components are ordered by their minimal distance
to window boundary, as in the template probing sequence.
Second, the value of hi(u) and hi(v) do not appear in (11)

and only ∆i(δ) is interesting. Finally, we use the expected
values of ∆i(δ) instead of their actual values:

∆i(+1) = E[U(i)] =
i

2(M + 1)

∆i(−1) = 1 −E[U(i)].

(14)

These assumptions would allow us to calculate the probabil-
ities directly from the template probing sequence.

The performance model of both recall and selectivity is
given by (7–14).

3.2 Modeling Data Distribution
To apply the performance model to real datasets, we still

need to determine a series of distributions: the distribution
of the distance X between two arbitrary points, and the dis-
tributions of the distance Xk between an arbitrary query
point and its kth nearest neighbor. These distributions are
dataset specific and there is not a universal family that fits
every possible dataset. However, we show that many ex-
isting multimedia datasets do fit a common family — the
gamma distribution. In this subsection, we show how to ex-
tract statistical parameters from a small sample dataset and
do parameter estimation specific to the gamma distribution.

A previous study [20] has shown with multiple datasets
that the distribution of L1 distance between two arbitrary
points follows the log-normal distribution without giving any
intuitive explanation. Actually a log-normal variable is con-
ceptually the multiplicative product of many small indepen-
dent factors, which can not be easily related to distance
distributions. In this paper, we propose to fit the squared
L2 distances, both X2 and X2

k , by the gamma distribution,
whose probability density function is

fκ,θ(x) = α(
x

θ
)κe−x/θ (15)

where κ is the shape parameter, θ is the scale parameter, as
it always appears as the denominator under x, and α is the
normalizing coefficient such that the integral of the function
over R+ is 1. The gamma distribution and log-normal dis-
tribution have similar skewed shapes and are usually consid-
ered as alternatives. However, for our purpose, the gamma
distribution has the following advantages.

First, it fits many multimedia datasets. Figure 2 and 3
show that both X2 and X2

k can be accurately fitted (see
Section 5.1 for detailed description of the datasets). Various
other examples exist, but are not shown due to the page
limit.

Second, the gamma distribution has an intuitive explana-
tion which is related to the dataset’s intrinsic dimensionality.
Assume that the feature vector space can be embedded into
RD, D being the intrinsic dimensionality. For two points
u and v, assume the difference of each dimension, ui − vi,
follows an identical but mutually independent Gaussian dis-
tribution, then ||u − v||2 =

PD
i=1(ui − vi)

2 is the sum of
D squared Gaussian variables, which can be proved to fol-
low χ2 distribution, a special case of gamma distribution.
The parameter κ in the distribution is determined by the
dimensionality of the space. When D is integer, we have
the relationship D = 2(κ + 1). Because gamma distribu-
tion does not require κ to be integer, we extend this to the
non-integer case, and call 2(κ + 1) the degree of freedom of
the distribution, which we expect to capture the intrinsic di-
mensionality of the datasets. A dataset with higher degree
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Figure 2: The squared distance between two arbitrary points (X2) follows the gamma distribution.
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Figure 3: The squared distance between the query point and kth NN (X2
k) follows the gamma distribution

of freedom will be harder to index. The relative order of the
three dataset with regard to degree of freedom matches the
experimental results in Section 5.

Finally, there exists an effective method to estimate the
distribution parameters. The parameters of gamma distri-
bution can be estimated by Maximum Likelihood Estima-
tion (MLE), and depends only on the arithmetic mean E
and geometric mean G of the sample, which can be easily
extracted from the dataset. Given E and G, κ and t can be
solved from the following set of equations.

(

κθ = E

ln(κ) − ψ(κ) = ln(E) − ln(G)
(16)

where ψ(x) = Γ′(x)/Γ(x) is the digamma function.
To obtain the estimation of the distributions of X2 and

X2
k , we need to calculate from the sample set the corre-

sponding arithmetic and geometric means of these random
variables. For X2, the means E and G can be obtained sim-
ply by sampling random pairs of points. For X2

k , we need Ek

and Gk for each k under consideration. As the total number
K of nearest neighbors can be big, maintaining K pairs of
means is not practical. Further more, the distribution of X2

k

depends on the size N of the dataset. At the performance
modeling stage, there is usually only a small subset of the
whole dataset available. In such case, we need to extrapo-
late the parameters according to the available data. Pagel
et al. [17] studied the expected value of Xk as a function of
k and N , and proved the following relationship:

E[Xk] =
[Γ(1 + D1

2
)]

1
D1

√
π

„

k

N − 1

« 1
D2

. (17)

where D1 and D2 are the embedding dimensionality and
intrinsic dimensionality, respectively, and N is the size of
dataset. Based on this result, we propose to empirically
model both Ek and Gk of X2

k as power functions of both k
and N :

Ek = αkβNγ Gk = α′kβ′

Nγ′

(18)

To extract the parameters, a subset of the dataset is sampled
as anchor points, and subsets of various sizes are sampled
from the rest of points to be queried against. The K-NNs of
all the anchor points are found by sequential scan, resulting
in a sample set ofXk for different values of k andN . We then
obtain the six parameters of (18) via least squares fitting.
As shown by Figures 4 and 5 (for now, disregard the curve
“arith. mean + std”) this power law modeling is very precise.

The fact that for fixed k, Xk is a power function of N is
very important for practical system design. It indicates that
Xk changes very slowly as dataset grows, the optimal LSH
parameters should also shift very slowly as data accumulate
This allows us to keep high performance of LSH by only re-
constructing the hash tables when dataset doubles, and this
kind of reconstruction could be achieved with low amortized
cost.

With the above method, 8 parameters are collected in
total. Given the full dataset size to be indexed, we can
obtain via MLE the distribution function f(.) of X2, and
distribution functions fk(.) of X2

k . The performance of LSH
is then calculated by

ρ =
1

K

K
X

k=1

Z ∞

0

ρ(
√
x)fk(x)dx (19)

τ =

Z ∞

0

ρ(
√
x)f(x)dx (20)

4. APPLICATIONS OF THE MODEL
This section presents two applications of the performance

model. First is parameter tuning for optimal average perfor-
mance and second is adaptive probing, which dynamically
determines for each query how many buckets to probe at
runtime.
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Figure 4: Arithmetic and geometric means of squared k-NN distance (X2
k) follow the power law with regard

to k.
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Figure 5: Arithmetic and geometric means of squared k-NN distance (X2
k) follow the power law with regard

to N . Here we use k = 50.

4.1 Offline Parameter Tuning
There are four parameters related to LSH. Among them,

W , M and L need to be fixed when creating the hash tables,
and T is related to the query processing algorithm and can
either be fixed offline, or change from query to query. Ac-
cording to our model, larger L results in higher recall with
the same selectivity, thus L should be tuned to the max-
imal affordable value, as limited by the storage available.
Note that in practice if L is really high (L >> 10, which
is not likely to happen for large datasets), query time will
again start increasing as the cost to generate the probing
sequences becomes dominant.

We would like to tune W and M for optimal when creat-
ing the hash tables, while having T adaptively determined
at query time. However, our model requires a fixed T value
to predict the performance, and thus to tune W and M .
As a workaround, we choose a fixed T value of medium size
(adding an equation T = M is a good choice, as the first few
buckets are the most fruitful[15]) to tune for (near) optimal
W and M , and again determine the T value for each query
online (to be explained in next subsection). The optimiza-
tion problem is as follows:

min. τ (W,M)

s.t. ρ(W,M) ≥ required value.
(21)

In our implementation, we use the following simple method
to solve this problem. Assume M is fixed, the relationships
between W and both recall and selectivity are monotonic
(see Figure 7A-C), and the optimal W can be found using
binary search. We then enumerate the value of M from 1
to some reasonably large value max (30 for our datasets) to
obtain the optimal. On a machine with Pentium 4 3.0GHz
CPU, our code runs for no more than one minute for each
of the datasets we have.

4.2 Adaptive Query Processing
In the previous subsection, we tuned M and W for op-

timal average performance. However, for the following rea-
son, we do not want to determine the T value offline as first
proposed in [15]: even if we tune for optimal average perfor-
mance, the actual performance can be different from query
to query. That is because recall and selectivity are both
determined by the local geometry of the query point. The
“arith. mean + std”curves in Figure 4 show a large standard
deviation, which means that the local geometry of different
query points can be very different. For each specific query,
probing the default T buckets can be either too few or too
many to achieve the required recall. In this subsection, we
address this problem by the adaptive probing method.

The basic idea of adaptive probing is simple: maintain
an online prediction of the expected recall of current query,
and keep probing until the required value is reached. If we
knew the true K-NN distances precisely, we can predict the
expected recall with our performance model. The problem
is then turned to predicting the true K-NN distances by
the partial result when processing the query, and refine the
prediction iteratively as new buckets are probed. A natural
approach is to use the partial results themselves as approx-
imations of the true K-NNs. This approximation actually
has an advantage that the estimated values are always larger
then the real values, and the estimated expected recall is
thus always lower than the real value. Also, as the probing
sequence goes on, the partial K-NNs will quickly converge
to the real ones. In practice, if one is to tune for 90% recall,
the estimated value should be more or less the same as the
true one.

Adaptive probing requires calculating the current expected
recall after each step of probing and this computation is time
consuming. To prevent this from slowing down the query
process, a small lookup table is precomputed to map K-NN



Dataset # Feature Vectors Dimension
image 662,317 14
audio 54,387 192

3D shape 28,775 544

Table 2: Dataset summary

distances to expected recalls, for each different T value. Our
experiments show that the run time overhead of using this
lookup table is minimal.

5. EVALUATION
In this section, we are interested in answering the following

two questions by experimental studies:

1. How accurate is our model in predicting LSH perfor-
mance, when the model parameters are obtained from
a small portion of the whole dataset?

2. How does our adaptive probing method improve over
the fixed method?

The evaluation of our methods with three real-life datasets
gives satisfactory answer to these questions.

5.1 Datasets
We employ three datasets to evaluate our methods: im-

ages, audio clips and 3D shapes. Table 2 provides a sum-
mary of them. These datasets are chosen to reflect a variety
of real-life use cases, and they are of different number of di-
mensions, from tens to hundreds. Experiments with a couple
of other datasets have shown equally good results, but are
not shown here due to the space limit.
Image Data: The image dataset is drawn from the Corel
Stock Photo Library, a dataset for evaluating content-based
image retrieval algorithms. For feature extraction, we use
JSEG [5] to segment the images into regions and use the
method in [13] to extract a feature vector from each region.
The feature vector is of 14 dimensions, among which, 9 is
for color moments and 5 is for shape and size information.
There are 66,000 images in the dataset, and each image is
segmented into roughly 10 regions, resulting in 662,317 fea-
ture vectors in total.
Audio Data: The audio dataset is drawn from the DARPA
TIMIT collection [7]. The TIMIT collection is an audio
speech database that contains 6,300 English sentences spo-
ken by 630 different speakers with a variety of regional ac-
cents. We break each sentence into smaller segments and
extract features from each segment with the Marsyas li-
brary [19]. There are 54,387 192-dimensional feature vectors
in total.
Shape Data: The third dataset we use in our study con-
tains about 29,000 3D shape models, which is a mixture of
3D polygonal models gathered from commercial viewpoint
models, De Espona Models, Cacheforce models and from
the Web. Each model is represented by a single Spher-
ical Harmonic Descriptor(SHD) [12], yielding 28,775 544-
dimensional feature vectors in total.

5.2 LSH Model Evaluation
First of all, we need to justify modeling query latency

with selectivity τ under the assumption that the most of
the query time is spent scanning the candidate data points.
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Figure 6: Latency vs. selectivity. The different se-
lectivities in the two figures are obtained by varying
T and W respectively. The matching of the two fig-
ures confirms the reliability of selectivity as a proxy
of latency.

Since τ is not a tunable input parameter, we conduct two
different experiments by varying different input parameters
for the image dataset. With all other parameters fixed, one
experiment changes τ by using different window sizes (W ),
and the other by using different probing sequence lengths
(T ). For each configuration of parameters, 1,000 queries for
50-NN are executed, with latency and selectivity τ recorded.
These numbers are then binned by τ , and the average and
the standard deviation of the latencies in each bin are cal-
culated and plotted. Our results are shown in Figure 6, the
height of the error bar representing two standard deviations.
The linear relationship between query time and τ is obvious.

Strictly speaking, apart from the time spent on scanning
the candidate set, there is a tiny cost to initialize the query
data structure, and a tiny cost to locate the bucket to scan at
each probing step. If these costs are not small enough, they
should be seen in the plots. The former should create a non-
zero y-intercept, and the latter will make the slopes of the
two curves different. Figure 6 shows a minimal initial cost
and a very small divergence between the slopes of the two
curves which can be safely ignored in practice. As a result,
it is safe to use selectivity as the machine-independent time
cost instead of latency which is machine-dependent.

We then go on to evaluate the accuracy of the model itself.
As the model involves four input parameters, i.e. W , M , L
and T , and two output parameters, i.e. recall ρ and selec-
tivity τ , it is hard to evaluate an overall accuracy. Also, not
every point in the input parameter space is equally interest-
ing because only the parameter configurations that result in
high recall and low selectivity are of practical importance.
We thus design our experiments in the following way. First,
a set of baseline parameters are chosen for each dataset,
which achieves about 90% recall with a reasonably low se-
lectivity. Then each time we fix all but one of the four pa-
rameters and change it around the baseline value. For each
configuration of the parameters, we build LSH data struc-
ture with the whole dataset, and run 50-NN queries for 1,000
randomly sampled query points. The average of the recall
and selectivity are recorded and plotted. We also predict the
average recall and selectivity with our performance model.
The data parameters are extracted from one 10th the whole
dataset according to the method discussed in Section 3.2.



The effects of the four parameters on the three datasets
are shown in Figure 7A-L, with error bars representing two
standard deviations. According to the figures, the predicted
values are close to the real experimental values, and most of
the errors are within one standard deviation. Our prediction
of recall values is especially accurate. The error is within 5%
the actual recall value for most cases. When M > 15, the
error ratio is a little high, but these cases have very low re-
call, and are not interesting in practice. Further more, our
predictions correctly follow the trends of the actual curves.
This implies that our model is reliable for real system de-
sign and the automatically tuned parameters are close to
optimal.

By experimenting with the parameters one by one while
leaving the others fixed, we also see the performance impact
of each parameter.

5.3 Adaptive Query Evaluation
In this subsection, we first conduct an experiment to show

the impact of local geometry around query points on the
performance, and demonstrate the advantage of adaptive
method over the original method with fixed T , which we call
the fixed method. We then show by another experiment that
the adaptive method is capable of working with different K
values at query time. Note that so far our discussion has
been assuming a fixed K value.

The local geometry is best described by local K-NN dis-
tances (Xk as in the model), and we want to see how LSH
performs for query points with different K-NN distances.
For each dataset, we sample 1,000 queries at random, and
group them into about 30 bins according to the distances to
the 50th nearest neigbhor (X50). We then run both fixed
and adaptive versions of the query algorithm, and plot the
average recall and selectivity for each bin. The parame-
ters M and W are tuned for 90% recall of 50-NN queries,
assuming T = M . For adaptive method, T is again dy-
namically determined at query time. The results are shown
in Figure 8, and there is an obvious difference between the
behaviors of the two methods. These results are better un-
derstood when compared with Figure 3, which shows the
probability distribution of K-NN distance. The average and
standard deviations of the recall and selectivity values can
also be found in the K = 50 rows of Table 3.

Both recall and selectivity of the fixed method drop dra-
matically as K-NN distance grows beyond certain point.
This is because LSH is tuned to perform well for average
K-NN distance, which is relatively small. For queries with
larger K-NN distance, both the nearest neighbors and the
background points have smaller chances of falling into the
probed buckets, and thus the fixed method gets excessively
low recall. To compensate this effect, the fixed method has
to achieve exceptionally high recall, close to 100%, with the
easy cases. Because selectivity grows faster at higher recall
values (see Figure 7), such compensation will result in higher
overall cost.

The adaptive method, however, is able to probe more
buckets for those difficult points and achieve a high recall
to meet the requirement. As a result, the adaptive method
significantly reduces the variance of recall and better meets
the quality requirements for individual queries. For the dif-
ficult queries on the right end of the curves, it costs more
than average for the adaptive method to achieve the required
recall.

Data K T

recall/stdev (%) selectivity (%)

fixed adaptive reduction fixed adap.

Image

10 8 94/12 95/08 39% 0.3 0.3

50 14 91/12 95/06 51% 0.5 0.5

100 22 90/12 95/05 57% 0.6 0.6

Audio

10 10 95/13 98/05 58% 22 17

50 14 94/12 98/04 70% 25 21

100 20 95/11 98/03 68% 28 23

Shape

10 7 97/09 97/07 23% 11 08

50 14 97/09 96/05 45% 16 11

100 22 97/09 96/04 49% 19 12

Parameters W ,M and L are the same as in Figure 8. The T
values shown are only for fixed method.

Table 3: Adaptive vs. fixed method on dealing with
different K requirement. To achieve the same recall,
the fixed method needs to have T tuned for differ-
ent Ks, while the adaptive method does not. We can
also see a significant reduction of recall standard de-
viation by the adaptive method.

Our second experiment is to show that the adaptive method
works with different K values better compared to the fixed
method, which is tuned for a single K value. To compare the
two methods, we use the same hash tables constructed with
the parameters tuned for 50-NN queries, the same as those
used in Figure 8. And we use these tables to answer queries
for 10, 50, 100-NNs to see how the two methods behave.
For the fixed method, we use our model to pre-calculate the
T needed for each of the three cases so as to achieve 90%
recall on average (as shown in the third column of Table 3)
, and for the adaptive method, T of each query is dynami-
cally determined. For each configuration of parameters, we
run 1,000 queries and take the average recall and selectivity
as well as the standard deviation. The results are shown in
Table 3.

As we can see from the results, the adaptive method signif-
icantly reduces the performance variation between different
queries. The standard deviation reductions for recall are
50%, 65% and 40% for three datasets respectively, around
50% on average. Also in most cases, the adaptive method
produces a higher recall than the fixed method, with a lower
selectivity.

The above two experiments allow us to demonstrate the
effectiveness of our adaptive query process method on re-
ducing the variation of performance among different queries
as well as the average cost to achieve the same recall.

6. CONCLUSION
Our study shows that it is possible to model Multi-probe

LSH and data distribution accurately with small sample
datasets and use the models for automatic parameter tuning
in real implementations.

We have proposed a performance model for multi-probe
LSH and a data model to predict the distributions of K-NN
distances in a dataset. Our experiments with three datasets
show that the models fitted with small sample datasets are
accurate; the recalls are within 5% of the real average values
for most cases.

We have derived an adaptive search method based on the
performance model to reduce performance variance between



different query points. Our experimental results show that
the adaptive method can reduce the standard deviation of
recalls by about 50%, while achieving the same recall with
lower latency.

We have implemented the automatic tuning in the toolkit
which will be made available to the public domain[1].

Acknowledgments

This work is supported in part by NSF grants EIA-0101247,
CCR-0205594, CCR-0237113, CNS-0509447, DMS-0528414
and by research grants from Google, Intel, Microsoft, and
Yahoo!. Wei Dong is supported by Gordon Wu Fellowship.

7. REFERENCES
[1] http://www.cs.princeton.edu/cass.

[2] M. Bawa, T. Condie, and P. Ganesan. Lsh forest:
self-tuning indexes for similarity search. In WWW ’05:
Proceedings of the 14th international conference on
World Wide Web, pages 651–660, New York, NY,
USA, 2005. ACM.

[3] J. L. Bentley. K-d trees for semidynamic point sets. In
SCG ’90: Proceedings of the sixth annual symposium
on Computational geometry, pages 187–197, New
York, NY, USA, 1990. ACM.

[4] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni.
Locality-sensitive hashing scheme based on p-stable
distributions. In SCG ’04: Proceedings of the twentieth
annual symposium on Computational geometry, pages
253–262, New York, NY, USA, 2004. ACM Press.

[5] Y. Deng and B. Manjunath. Unsupervised
segmentation of color-texture regions in images and
video. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 23(8):800–810, August 2001.

[6] D. Dobkin and R. J. Lipton. Multidimensional
searching problems. SIAM Journal on Computing,
5(2):181–186, 1976.

[7] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G.
Fiscus, D. S. Pallett, and N. L. Dahlgren. DARPA
TIMIT acoustic-phonetic continuous speech corpus,
1993.

[8] A. Gionis, P. Indyk, and R. Motwani. Similarity
search in high dimensions via hashing. In VLDB ’99:
Proceedings of the 25th International Conference on
Very Large Data Bases, pages 518–529, San Francisco,
CA, USA, 1999. Morgan Kaufmann Publishers Inc.

[9] A. Guttman. R-trees: a dynamic index structure for
spatial searching. In SIGMOD ’84: Proceedings of the
1984 ACM SIGMOD international conference on
Management of data, pages 47–57, New York, NY,
USA, 1984. ACM.

[10] P. Indyk and R. Motwani. Approximate nearest
neighbors: towards removing the curse of
dimensionality. In STOC ’98: Proceedings of the
thirtieth annual ACM symposium on Theory of
computing, pages 604–613, New York, NY, USA, 1998.
ACM.

[11] N. Katayama and S. Satoh. The sr-tree: an index
structure for high-dimensional nearest neighbor
queries. In SIGMOD ’97: Proceedings of the 1997
ACM SIGMOD international conference on
Management of data, pages 369–380, New York, NY,
USA, 1997. ACM.

[12] M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz.
Rotation invariant spherical harmonic representation
of 3d shape descriptors. In SGP ’03: Proceedings of
the 2003 Eurographics/ACM SIGGRAPH symposium
on Geometry processing, pages 156–164, Aire-la-Ville,
Switzerland, Switzerland, 2003. Eurographics
Association.

[13] Q. Lv, M. Charikar, and K. Li. Image similarity search
with compact data structures. In CIKM ’04:
Proceedings of the thirteenth ACM international
conference on Information and knowledge
management, pages 208–217, New York, NY, USA,
2004. ACM.

[14] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and
K. Li. Ferret: a toolkit for content-based similarity
search of feature-rich data. In EuroSys ’06:
Proceedings of the ACM SIGOPS/EuroSys European
Conference on Computer Systems 2006, pages
317–330, New York, NY, USA, 2006. ACM.

[15] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and
K. Li. Multi-probe lsh: Efficient indexing for
high-dimensional similarity search. In VLDB ’07:
Proceedings of the 24rd International Conference on
Very Large Data Bases, Vienna, Austria, 2007.

[16] S. Meiser. Point location in arrangements of
hyperplanes. Inf. Comput., 106(2):286–303, 1993.

[17] B.-U. Pagel, F. Korn, and C. Faloutsos. Deflating the
dimensionality curse using multiple fractal dimensions.
In ICDE ’00: Proceedings of the 16th International
Conference on Data Engineering, page 589,
Washington, DC, USA, 2000. IEEE Computer Society.

[18] R. Panigrahy. Entropy based nearest neighbor search
in high dimensions. In SODA ’06: Proceedings of the
seventeenth annual ACM-SIAM symposium on
Discrete algorithm, pages 1186–1195, New York, NY,
USA, 2006. ACM.

[19] G. Tzanetakis and P. Cook. Marsyas: a framework for
audio analysis. Organized Sound, 4(3):169–175, 1999.

[20] Z. Wang, W. Dong, W. Josephson, Q. Lv,
M. Charikar, and K. Li. Sizing sketches: a rank-based
analysis for similarity search. In SIGMETRICS ’07:
Proceedings of the 2007 ACM SIGMETRICS
international conference on Measurement and
modeling of computer systems, pages 157–168, New
York, NY, USA, 2007. ACM.

[21] R. Weber, H.-J. Schek, and S. Blott. A quantitative
analysis and performance study for similarity-search
methods in high-dimensional spaces. In VLDB ’98:
Proceedings of the 24rd International Conference on
Very Large Data Bases, pages 194–205, San Francisco,
CA, USA, 1998. Morgan Kaufmann Publishers Inc.



 0

 0.2

 0.4

 0.6

 0.8

 1

 1  1.1  1.2  1.3  1.4  1.5  1.6  1.7  1.8  1.9
 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

re
c
a
ll

s
e
le

c
ti
v
it
y

W

(A) image
M = 14, L = 4, T = 14, K = 50

recall: real

selectivity: real

prediction

prediction

 0

 0.2

 0.4

 0.6

 0.8

 1

 2  2.2  2.4  2.6  2.8  3  3.2  3.4  3.6  3.8
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

re
c
a
ll

s
e
le

c
ti
v
it
y

W

(B) audio
M = 14, L = 8, T = 14, K = 50

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5  0.6  0.7  0.8  0.9  1  1.1  1.2  1.3  1.4
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

re
c
a
ll

s
e
le

c
ti
v
it
y

W

(C) shape
M = 14, L = 8, T = 14, K = 50

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 12 14 16 18 20
 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

re
c
a
ll

s
e
le

c
ti
v
it
y

M

(D) image
W = 1.73, L = 8, T = 14, K = 50

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 12 14 16 18 20
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

re
c
a
ll

s
e
le

c
ti
v
it
y

M

(E) audio
W = 3.66, L = 8, T = 14, K = 50

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 12 14 16 18 20
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

re
c
a
ll

s
e
le

c
ti
v
it
y

M

(F) shape
W = 0.8, L = 8, T = 14, K = 50

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6  7  8  9  10
 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

re
c
a
ll

s
e
le

c
ti
v
it
y

L

(G) image
W = 1.73, M = 14, T = 14, K = 50

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6  7  8  9  10
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

re
c
a
ll

s
e
le

c
ti
v
it
y

L

(H) audio
W = 3.66, M = 14, T = 14, K = 50

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6  7  8  9  10
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

re
c
a
ll

s
e
le

c
ti
v
it
y

L

(I) shape
W = 0.8, M = 14, T = 14, K = 50

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20
 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

re
c
a
ll

s
e
le

c
ti
v
it
y

T

(J) image
W = 1.73, M = 14, L = 4, K = 50

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

re
c
a
ll

s
e
le

c
ti
v
it
y

T

(K) audio
W = 3.66, M = 14, L = 8, K = 50

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

re
c
a
ll

s
e
le

c
ti
v
it
y

T

(L) shape
W = 0.8, M = 14, L = 8, K = 50

Figure 7: Recall and selectivity vs. W , M , L & T respectively. The predicted values are close to the average
experimental results.
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Figure 8: Adaptive vs. fixed method in terms of recall and selectivity. The recall of the fixed method
degrades as distance increases, while the adaptive method performs much more consistently. For the queries
with large distance, the adaptive method does more probes to achieve high recall.


