

Jigsaw Image Mosaics
 Junhwan Kim Fabio Pellacini
 Dept. of Computer Science, Cornell University Program of Computer Graphics, Cornell University

ABSTRACT
This paper introduces a new kind of mosaic, called Jigsaw

Image Mosaic (JIM), where image tiles of arbitrary shape are used
to compose the final picture. The generation of a Jigsaw Image
Mosaic is a solution to the following problem: given an
arbitrarily-shaped container image and a set of arbitrarily-shaped
image tiles, fill the container as compactly as possible with tiles of
similar color to the container taken from the input set while
optionally deforming them slightly to achieve a more visually-
pleasing effect. We approach the problem by defining a mosaic as
the tile configuration that minimizes a mosaicing energy function.
We introduce a general energy-based framework for mosaicing
problems that extends some of the existing algorithms such as
Photomosaics and Simulated Decorative Mosaics. We also present
a fast algorithm to solve the mosaicing problem at an acceptable
computational cost. We demonstrate the use of our method by
applying it to a wide range of container images and tiles.
CR Categories: I.3.8 [Computer Graphics]: Application; I.3.5
[Computational Geometry and Object Modeling]: Geometric algorithms,
languages, and systems; J.5 [Arts and Humanities]: Fine arts
Keywords: Mosaics, Morphing, Optimization

1. INTRODUCTION
Mosaics are a form of art in which a large image is formed by a

collection of small images called tiles. Various mosaics can be
created for an image depending on the choice of tiles and the

restriction in their placement. Tile mosaics, for example, are
images made by cementing together uniformly colored polygonal
tiles carefully positioned to emphasize edges in the composite
picture; Simulated Decorative Mosaics [Hausner 2001] is an
algorithm that can generate tile mosaics. Photomosaics [Silvers
and Hawley 1997] are a different kind of mosaic where a
collection of small images is arranged in a rectangular grid in such
a way that when they are seen together from a distance they
suggest a larger image. Finally, Arcimboldo, a Renaissance Italian
painter, was the self-proclaimed inventor of a form of painting
called the composite head where faces are painted, not in flesh,
but with rendered clumps of vegetables and other materials
slightly deformed to better match the human features [Strand
1999].

Inspired by Arcimboldo, we propose a new kind of mosaic
where image tiles of arbitrary shape are used to compose the final
arbitrarily-shaped picture. We called this new kind of mosaic
Jigsaw Image Mosaic (JIM). Figure 1 illustrates the process of
creating a JIM. Our algorithm takes as input a container image of
arbitrary shape and a set of image tiles of arbitrary shape; it then
packs the container as compactly as possible with tiles of similar
color to the container taken from the input set while optionally
deforming them slightly to achieve a more visually-pleasing
effect. We can formally define the problem as follows:

Problem (Jigsaw Image Mosaic): Given an arbitrarily-
shaped container image and a set of arbitrarily-shaped tiles
{Ti}, find a set of shapes {Sj} such that
• the union over the Sj resembles the container image as

closely as possible; and
• each Sj is a translated and rotated copy of one of the Ti,

possibly incorporating a small deformation.
In order to compute a JIM, we introduce a general energy-based

framework for mosaicing problems, where a mosaic is defined as
the tile configuration that minimizes a weighted sum of energy
terms. By changing the weights in the energy formulation, various
kinds of mosaics can be generated. Our framework generalizes

Figure 1: The Jigsaw Image Mosaic (JIM) algorithm takes as input an arbitrarily-shaped container image and a set of image tiles
of arbitrary shape (left) and generates a mosaic (right); it then packs the container as compactly as possible with tiles of similar

color to the container taken from the input set while optionally deforming them slightly to achieve a more visually-pleasing effect.

Copyright © 2002 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions Dept,
ACM Inc., fax +1-212-869-0481 or e-mail permissions@acm.org.
© 2002 ACM 1-58113-521-1/02/0007 $5.00

657

some of the existing mosaicing techniques previously presented in
the computer graphics literature such as Photomosaics [Silvers
and Hawley 1997] and Simulated Decorative Mosaics [Hausner
2001]. A comparison of the images obtained by the three
algorithms is presented in Figure 2. As with Photomosaics, our
algorithm uses tiles containing smaller images. As in Simulated
Decorative Mosaics, the Jigsaw Image Mosaics maintain
important edges found in the container image; while the first
algorithm does so by reorienting the tiles, our approach uses
oriented tiles of the best-fitting shape as shown, for example, by
the wedge-shaped tiles used in the sharp corners of the drops in
Figure 2b and Figure 2c. The two algorithms use a segmentation
of the original image in order to specify important edges.

Our framework has three major advantages. First, a user can
easily control the result image by changing the weights in the
energy formulation. Second, we can introduce new mosaicing
generation rules by introducing additional energy terms in the
energy formulation. Finally, the mosaic generation and tile
preparation is completely automatic requiring no user
intervention.

Since the Jigsaw Image Mosaic problem can be cast as an
instance of an energy minimization problem, various algorithms
such as simulated annealing could be employed to find a solution.
Unfortunately, due to its high dimensional search space, most of
the standard minimization techniques would demand too many
resources to be run. This paper also presents a fast minimization
algorithm tailored to solve the generalized mosaicing problem.

We believe that the two major contributions of this paper are
• an energy-based framework for the mosaicing problem which

generalizes on known algorithms
• an energy-minimization algorithm that solves the mosaicing

problem at an acceptable computational cost
Also, since our framework presents a general solution to �soft�

packing problems, where small deformations are acceptable, our
framework can be applied to feature-based texture synthesis and
to various instances of product manufacturing. Mosaics are just
one application.

The rest of this paper is organized as follows: Section 2
summarizes related work. In Section 3, we describe how to
automatically prepare the required inputs. Sections 4 and 5
address the energy minimization framework of the mosaicing
problem, and the basic algorithm for the framework respectively.
Section 6 presents optimization techniques on top of the basic
algorithm. We present our results in Section 7, and close with
discussion and future work in Section 8.

2. RELATED WORK
In the computer graphics literature, the works most closely

related to our approach are the various mosaicing algorithms that
can be categorized by the choice of tiles and the restriction on
their placement. Photomosaics [Finkelstein and Range 1998;
Silvers and Hawley 1997] are a collection of small images
arranged in a rectangular grid in such a way that when they are
viewed together from a distance they suggest a larger image (e.g.
Figure 2d). For each rectangular block of pixels in the input
image, the photomosaic algorithm searches a large database of
tiles to find the one that most closely resembles the original block.
The algorithm gives impressive results using only small resources,
but unfortunately it is limited to square tiles on a rectangular grid.
Simulated Decorative Mosaic [Hausner 2001] approaches the
problem of aligning square tiles with varying orientations to
preserve input image edges while maximizing the area covered by
the colored tiles (e.g. Figure 2e). Our algorithm resembles that
approach since it tries to maintain edges in the input image while
maximizing coverage. Unfortunately, since we use tiles of
different shapes, we cannot directly apply the Simulated
Decorative Mosaic method for finding low-energy configurations.
Our technique can compute the same results as these two
algorithms, although its generality exacts a penalty in speed.

Kaplan and Salesin [2000] presented a solution to the
�Escherization" problem that finds a regular tiling using a closed
figure that is as similar as possible to the original figure. Their
work resembles our approach in that they slightly distort the
original tile if necessary, but is different in that they seek regular
tilings whereas we allow small gaps and overlaps. Haeberli [1990]
randomly chose the tile positions, found the voronoi diagram of
these positions, and filled each voronoi region with a color
sampled from the underlying image. While his approach
tessellates the main image using tiles of different shapes and
completely arbitrary placements, the shapes are arbitrary and may
not fit any of the given input tiles as required in our formulation.

Another body of work related to our approach is the packing
problem. The packing problem has been extensively studied in
operations research and computational geometry with application
to a broad spectrum of layout problems, such as for cloth, leather
and glass. Since the packing problem is NP-hard [Milenkovic
1999], numerous heuristics have been developed: boundary
matching, database driven layout, or leftmost placement policy
(See [Dowsland and Dowsland 1995] for an extensive survey).
Recent work of Milenkovic and his colleagues [1999] combined

a) Input image

b) JIM tile contours

roughly 400 tiles
from a database of 900 tiles

roughly 400 tiles
from a database of 1100 photographs

roughly 400 tiles

c) Jigsaw Image Mosaic (JIM) d) Photomosaic e) Simulated Decorative Mosaic

Figure 2: Comparison of different mosaicing algorithms.

658

computational geometry and mathematical programming for
dense packing of polygons. Their approach applied to marker
layout problems achieves packing efficiencies comparable to
those of human experts. Our problem differs from the standard
packing problem in that our aim is not to achieve maximum-
density packing, but to reach aesthetically pleasing packing.
Inspired by Arcimboldo, we allow a small user-specified
deformation of the tiles when necessary, which is not allowed in
the standard packing problem formulation.

3. PREPARING INPUTS
The JIM algorithm takes as input a container image of arbitrary

shape and a set of tiles of arbitrary shape. The shape of tiles and
container is represented by a polygon. Since we require a fairly
high number of tiles, we need to be able to extract the shape of the
tiles directly from the images themselves. We do so using active
contours [Kass et al. 1987]. All of the 900 tiles used to generate
the images in this paper are segmented completely automatically
from clip art harvested from the Web. Active contours are also
used to extract the container shape.

 Hausner [2001] showed the importance of preserving important
edges in the input image when generating a mosaic. Following his
approach, we segment the input image to generate a set of disjoint
arbitrarily-shaped containers. Since we preserve the edge of each
container, the final composite will preserve the important edges
on the input image. Figure 2c shows this behavior. Within each
part of the segmentation, the algorithm runs independently. By
allowing the user to input arbitrary segmentations, we can also
introduce edges that are not present in the input image, but are
important to maintain for the user.

4. MOSAICING FRAMEWORK
4.1 Problem formalization
In order to achieve user controllable and extensible framework,

we cast the problem of generating a mosaic in an energy
minimization framework. We define a �tile configuration� as a
subset of the input tiles with repetition, along with their associated
transformations (translation, rotation, deformation). We say that a
tile configuration is a Jigsaw Image Mosaic when it minimizes the
energy E defined as

 DDOOGGCC EwEwEwEwE ⋅+⋅+⋅+⋅= . (1)
The energy is a weighted sum of various terms. Figure 3

illustrates the behaviors of each of these energy terms in a simple
example. The color energy term EC penalizes configurations that
do not maintain the color of the input image. The gap energy term
EG penalizes configurations that have too much empty space in the
final image, called gap, while a big overlap between tiles gives
large overlap energy EO. Finally, the deformation energy ED
penalizes configurations where tiles are highly deformed.

Inspired by Arcimboldo, we allow small deformations for each
tile since we may not find a configuration where gaps or overlaps

are small enough to achieve a pleasing visual effect. This is more
likely to happen for smaller tile databases. Since collecting a large
number of tiles may be a long process, we believe that allowing
the user to specify the amount of deformation necessary makes the
algorithm more usable.

In order to compute a Photomosaic in our formulation, we can
simply restrict the tile database to rectangular tiles and set the
weights for gap, overlap and deformation to infinity. To compute
a Simulated Decorative Mosaic, we restrict the database to square
tiles with uniform color, where the colors are chosen from the
palette of the input image, and segment the container to preserve
edges. We then set the deformation weight to infinity and a very
high overlap weight (note that Simulated Decorative Mosaics
results have sometimes very small overlaps [Hausner 2001]) and
moderately high gap weight.

We believe that our formulation is fairly intuitive to use, since
the user can easily adjust the weights in the energy function to
obtain different results. It is also easily extensible, since we can
add new energy terms in order to introduce additional rules for
image generation.

4.2 Energy terms evaluation
The color energy EC is estimated by taking the average of the L2

differences of the colors of the final image and the input container
at random locations on the surface of the container. We evaluate
this term for each tile separately to ensure a good sampling of the
tile area.

We evaluate gap EG and overlap EO energies using the spring
energy formulation as originally employed to prevent bodies in
resting contact from penetrating in rigid body simulations [Moore
and Wilhelms 1988]. More specifically, each vertex of a tile is
attached with a spring to the nearest edge of the other tiles or the
container. If the signed distance d between the vertex and the
anchor is positive, i.e. there is a gap between them, we add d2/2 to
EG. On the other hand, if d is negative, i.e. the vertex penetrates
the nearest edge, we add d2/2 to EO.

The deformation energy ED is the sum of the deformation
energies for each tile, which measures the difference in shape
between the deformed tile and the original one. We evaluate ED in
a similar way to the active contour model, given by

 ∑ ∫ ′′′−′′′+′′−′′= =
k
i iiiiD dssTsDsTsDE 1

1
0

22)()()()(
2
1 βα , (2)

where Ti(s) and Di(s) are the original shape and the deformed
shape of the i-th tile in the current solution, parameterized by s∈
[0,1]. The first term and the second term inside the integral
measure the difference between the original tile and the deformed
tile with respect to the stretching and flexing respectively, where α
and β are sensitivity parameters. Among numerous shape metrics
such as [Arkin et al. 1991], we choose the above one, since it
provides good results in our case and it is easily integrated in our
algorithm.

� high gap
energy ! discard

�high overlap
energy ! discard

�high deformation
energy ! discard

�high color
energy ! discard

Trying 2nd tile� Trying 3rd tile� Trying 4th tile� Trying 5th tile�Trying 1st tile�Container

Container to be
filled

Container filled

Tiles

Legend
�lowest energy !

Accept

Color mismatch Gap region Overlap region Shape mismatch Accepted tile

Figure 3: Illustration of mosaicing energy terms.

659

5. BASIC MOSAICING ALGORITHM
5.1 Overview
To efficiently compute a Jigsaw Image Mosaic, we propose an

effective algorithm organized in three phases shown in Figure 4.
In the first phase, we choose and roughly place the tiles, ignoring
deformation. In the second phase, we refine the placement of each
tile and deform them if necessary. Finally in the third phase, we
assemble the final mosaic by placing each tile in its position and
warping each image to its final deformed shape using the image
warping technique presented in [Arad et al. 1994]. Intuitively, this
three-phase approach works in our case because the deformations
we allow are always much smaller than the smallest tile in the
database.

5.2 Packing
The first phase of the algorithm finds an approximately good

configuration ignoring the deformation term, i.e. the configuration
that minimizes the gap and overlaps in the image while
maintaining the color, as measured by

 OOGGCC EwEwEwE ⋅+⋅+⋅= . (3)
To do so, we use a best first search [Russell and Norvig 1994].
Our algorithm places one tile at a time. For each new tile to place,
we find a roughly suitable position in the container. We then
search the database to determine which tile we should use, and
determine the exact position and orientation of the tile in such a
way that the tile is maximally aligned to the boundary of
container, i.e., E in Equation 3 is minimized. This is a typical
registration problem except that we register the tile to a part of the
container, rather than the container itself. We will explain in more
detail in Section 6 how to efficiently find a suitable spot using a
centroidal voronoi diagram (CVD) [Lloyd 1982] and how to
search the database using geometric hashing.

After we place a tile, a new container is computed by
subtracting the tile shape from the original container, as shown in
Figure 5. The new container is used to place the next tile.

We keep placing tiles until either the tiles completely fill out the
container or we cannot find a suitable tile to fill a container. If this
happens, we backtrack to the configuration that has minimal
energy so far. Figure 6 illustrates the algorithm sequence.

5.3 Refinement
Even after finding the best possible tile arrangement, too much

gap or overlap may remain and be aesthetically displeasing,
especially when using a small number of tiles. Sometimes we can
obtain a better looking result by slightly deforming the tiles to
reduce gaps and overlaps significantly, as long as the deformation
does not alter the original tile too much. While this generally
produces better looking images, the user has the option to define
the amount or skip deformation.

The refinement phase of our approach solves this issue by
deforming the tiles obtained from the packing stage, while
balancing between maintaining the original tile shape as closely as
possible and minimizing the gap, overlap and color differences
(i.e. minimizing the full energy equation). We compute the final
configuration using a set of active contours [Kass et al. 1987]
interacting with each other. Intuitively, each vertex of a contour is
subject to forces that tend to maintain the contour�s original shape
and to repulse two contours if they penetrate, or attract them if
there is gap between them. The tile configuration that minimizes
E in Equation 1 must satisfy the following euler equation:
 0=∇⋅+∇⋅+∇⋅+∇⋅ DDOOGGCC EwEwEwEw . (4)
∇EC is close to zero for our case since the deformations are much
smaller than the smallest tile. For each vertex, ∇EG=2d⋅n if the
vertex is in a gap (0 otherwise), where n is the unit vector
perpendicular to the nearest edge, d is the signed distance to the
nearest edge. ∇EO=2d⋅n if the vertex penetrates another tile (0
otherwise). ∇EO makes the tile shrink if it is too big while ∇EG
expands it if too small. The deformation term can be computed by
differentiating Equation 2 for each vertex:

 () ())()()()(sTsDsTsDE iiiiD ′′′−′′′+′′−′′=∇ βα . (5)

Phase 2:
Refining tiles

Phase 1:
Placing tiles

a) Initial container
image

b) Tile contours after
tile placement

c) Tile contours after
tile refinement

d) Final Jigsaw
Image Mosaic

Phase 3:
Adjusting images

Figure 4: Jigsaw Image Mosaic algorithm phases.

Container Available Tiles

Place 1st tile Cannot place next

Try again 1st tile

Backtrack

Place next Done

a b

c

Figure 6: Tile placement.

Tile Container with
placed tile

Container for
next iteration

a b c
Initial

container

Figure 5: Container update.

660

Notice that Equation 5 is exactly the same energy formulation
used for standard snakes but the �relaxed� state is defined as the
original tile shape rather than a simple straight line. Also, external
forces are determined not by an image (as in the standard snake),
but by gap and overlap between tiles and with the container. The
solution to the above equation can still be found by solving the
discrete system iteratively [Amini 1990]. Figure 7 shows the
evolution from the original tiles to the deformed ones.

6. ALGORITHM OPTIMIZATIONS
In the previous section, we presented the basic algorithm for tile

placement. A naïve implementation would be too resource
demanding so we present several optimization techniques in this
section. The time complexity of the algorithm is roughly given by
 ()()bNVNVO ainertileInContcontainertiletile +⋅⋅⋅⋅ 1 . (6)
where Vtile is the number of vertices per tile, Ntile is the number of
tiles in the database, Vcontainer is the number of vertices in
container, NtileInContainer is the number of tiles in the container, and
b is the overhead due to branching in the search tree
(backtracking). In the following subsections we will introduce
optimization for each of the factors in Equation 6.

6.1 Placing a tile
When placing a tile in a container of arbitrary shape, it would be

prohibitive to try every possible location. As we mentioned
before, we update the container after placing every tile. In order to
reduce the branching overhead b, we try those locations that are
most likely to make the container shape easier to fill after
updating. Unfortunately this depends on which tile we place.
Nevertheless, we can guess how the container would look after we
put an �average� tile. A container will be easier to fill if it does
not have a protrusion and is as convex as possible.

Before placing a new tile, we construct a CVD, where each site
has an area roughly equal to the average size of tiles (a similar
technique has been previously used in [Hausner 2001]). We then
select a random site among the ones that have the least number of
neighbors, thus making the container as easy as possible to fill.
Figure 8 shows the selection process. Notice that placing one tile
at a time allows us to handle tiles with different sizes. Figure 2c,
for instance, contains tiles that differ in size by 7 times.

6.2 Branch-and-bound with look-ahead
Every time we cannot find a suitable tile to fill a container, we

need to backtrack to the configuration that has minimal energy so
far. To reduce this branching overhead b, we use a look-ahead
technique [Russell and Norvig 1994]. When placing a new tile, we
penalize tiles that will make it harder to fill the container in the
next iteration. To do this we add a term to the energy formulation
that takes into account how the container will look after tile
placement. Thus, the energy in Equation 3 becomes:

 LALACCOOGG EwEwEwEwE ⋅+⋅+⋅+⋅= . (7)
The container shape term advocates for containers with a small
area and short circumference, or

 () 21 lengthwareawE AALA ⋅−+⋅= , (8)
where area is the container�s area, length is its boundary length,

and wA controls the weight of area in relation to the weight of
length. Adding the container shape term in the energy evaluation
prevents the algorithm from placing a tile that fits well but that
leads to a harder-to-fill updated container.

6.3 Container cleanup
After we place a tile in a container, we update the container by

subtracting the tile from the container. However, the new
container can be very jagged, or even have disjoint regions. If
these fragments are shallower than the shallowest tile, we know it
can never be filled with any existing tile. In that case, it is safe to
separate those fragments and consider them as a gap. This cleanup
process reduces the running time by cutting the number of vertices
in the container Vcontainer. It also reduces the branching overhead b,
since it prevents the algorithm from wasting time attempting to fill
unpromising fragments of the container.

6.4 Geometric hashing
Given a container and a location in the container, we need to try

each tile in the database and their positions and orientations. Since
the number of tiles is fairly high, a linear search would be
prohibitive. To this end, we employ geometric hashing, a
technique originally developed in computer vision for matching
geometric features against a database of such features [Wolfson
and Rigoutsos 97]. We use geometric hashing to select a few tiles
that will suit to a particular position in the container. We then
evaluate the energy term for them and pick the best fitting one.
Intuitively we use geometric hashing as a pruning technique to
reject bad tiles.

In order to use geometric hashing, we will create a grid of
squares in the plane in a preprocessing phase. Each square
corresponds to a hash table entry. If a shape boundary crosses a
square, we will record the tile ID and its orientation as an entry in
the list attached to that hash table entry. In the preprocessing
phase we place all tiles with all possible discrete orientations in
the grid to build the hash table. Every time we need to place a new
tile in a specific position in the container during the packing stage
we register the container boundary segment to the hash table and
access the hash table entries of the squares that the container
passes through; for every entry found there, we cast a vote for the
(tile ID, tile orientation) pair. We proceed to determine those
entries that received more than a certain number of votes. Each
such entry corresponds to a potential candidate. See Figure 9 for
an illustration. This hashing technique reduces the time
complexity of the algorithm from O(Ntile) to O(hgrid), where hgrid is
the grid granularity.

a) Bad tile: 15 votes b) Good tile: 22 votesLegend
Container
contour
Tile contour
Container and
tile contour
overlap:
cast a vote

Figure 9: Geometric hashing for the 3rd and 5th tile in Figure 3.

a) Initial
contours

b) Intermediate
contours

c) Converged
contours

Figure 7: Evolution of active contours.

CVD connected graph

CVD cells

Selected position:
only two neighbors
in the CVD graph

Legend

Figure 8: Selecting a tile position by CVD.

661

7. RESULTS
We have used our algorithm to produce a number of Jigsaw

Image Mosaics using various container images. The images
contained in this paper were generated from a database of 900
tiles, some of which are from the Columbia Coil-100 dataset and
Coolarchive.com. Size of the tiles varies by up to 8 times. It took
about 10 minutes to 2 hours to generate the results.

Figures 1 and 2 show that our algorithm faithfully reproduces
colors and boundaries of letters and logos. Figure 10 shows three
variations of the �J� mosaic in Figure 10a obtained by changing
the parameters in the energy formulation. Figure 10b shows the
result for a very low color weight. Figure 10c was computed
allowing a large overlap between tiles. Figure 10d is a picture
generated with tiles in different scales. These variations show how
simply changing the weights in the energy function can generate
different looking images that an artist can easily tweak.

Figure 11 shows the result for a photograph of a panda. Given
the container image and its segmentation, our algorithm
reproduces the container image in a visually pleasing way. As in
[Hausner 2001], we used the different scales of tiles to faithfully
reproduce fine details of the containers, such as the mouth of the
panda. Figure 12 shows a different example where the user draws
additional edges to emphasize features of the picture, in this case
the feathers of the parrot. As a result, our algorithm clearly
reproduces the user-supplied features. Figure 13 shows an artistic
picture of a kabuki, generated by preserving the edges of the
original picture, but assigning different colors associated to each
segment and a texture to the background.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented a general energy-based

framework for mosaicing problems that generalizes some of the
existing algorithms. We also introduce a new kind of mosaic, the
Jigsaw Image Mosaic (JIM), where tiles and container are
arbitrarily-shaped images. Finally we presented an effective
algorithm to quickly compute a JIM. Our method produces good
results, and is general enough to be applied to other �soft� packing
problems such as texture synthesis and product manufacturing.

This research suggests a number of directions for further study.
Our current approach uses a search algorithm for packing. Even
though it is effective because of the elaborate use of look-ahead
technique and other optimizations, it is difficult to formally prove
bounds on the energy of the final configuration. Approaches based
on mathematical programming or computational geometry as in
[Milenkovic and Daniels 1999] could be fruitful. Our framework
could also be extended to 3D mosaic, where the container is a 3D
object and the tiles can be 2D to fill out the surface of the
container, or 3D to fill out the container itself.

9. ACKNOWLEDGEMENTS
We would like to thank Eva Tardos, Klara Kedem, Paul Chew, Shimon Edelman,

James E. Cutting, Vladimir Kolmogorov, and Amy Gale for their insights and
comments and to Ramin Zabih and Donald P. Greenberg for their encouragement.
Peggy Anderson, Parag Tole, and Steven Westin carefully read the manuscripts. We
would also like to thank Alejo Hausner for providing us his software and to the
anonymous reviewers for their constructive critiques. Some of the tiles in Figure 2d
were obtained from the MIT VisTex web page (Copyright © 1995 MIT. All rights
reserved). Junhwan Kim was supported by NSF grants IIS-9900115 and CCR-
0113371 and a grant from Microsoft Research, while Fabio Pellacini was supported
by NSF Science and Technology Center for Computer Graphics and Scientific
Visualization (ASC-8920219).

10. BIBLIOGRAPHY
AMINI, A. A. 1990. Using Dynamic Programming for Solving Variational Problems

in Vision. IEEE Trans. on PAMI, Vol. 12, no 9, pp. 855-867, Sept. 1990.
ARAD, N., DYN, N., REISFELD, D., AND YESHURUN, Y. 1994. Image warping by Radial

Basis Functions: Application to Facial Expressions. Computer Vision, Graphics,
and Image Processing. GMIP, 56 (2), 161--172, 1994.

ARKIN, M., CHEW, P., HUTTENLOCHER, D. P., KADEM, K., AND MITCHELL, J.S.B.
1991. An Efficiently Computable Metric for Comparing Polygonal Shapes. IEEE
Trans. on PAMI, Vol. 13, No. 3, 209-216, Mar. 1991.

DOWSLAND, K. A. AND DOWSLAND, W. B. 1992. Packing Problems. European
Journal of Operational Research, 56:2 - 14, 1992.

DOWSLAND, K. A. AND DOWSLAND, W. B. 1995. Solution Approaches to Irregular
Nesting Problems. European Journal of Operational Research, 84:506--521,
1995.

FINKELSTEIN, A. AND RANGE, M. 1998. Image Mosaics. In Roger D. Hersch, Jacques
André, and Heather Brown, Ed., Artistic Imaging and Digital Typography, LNCS,
No. 1375, Heidelberg: Springer-Verlag 1998.

HAEBERLI, P. 1990. Paint by Numbers. In Computer Graphics (Proceedings of ACM
SIGGRAPH 90), 24(4), ACM, 207-214.

HAUSNER, A. 2001. Simulating Decorative Mosaics. In Proceedings of ACM
SIGGRAPH 2001, ACM Press / ACM SIGGRAPH, New York, E. Fiume, Ed.,
Computer Graphics Proceedings, Annual Conference Series, ACM, 573-580.

KAPLAN, C.S. AND SALESIN, D.H. 2000. Escherization. In Proceedings of ACM
SIGGRAPH 2000, ACM Press / ACM SIGGRAPH, New York, K. Akeley, Ed.,
Computer Graphics Proceedings, Annual Conference Series, ACM, 499-510.

KASS, M., WITKIN, A., AND TERZOPOULOS, D. 1987. Snakes: Active Contour Models,
International Journal of Computer Vision, 1:321--331, 1987.

LLOYD, S. 1982. Least Square Quantization in PCM. IEEE Transactions on
Information Theory, 28(1982): 129-137.

MILENKOVIC, V.J. 1999. Rotational Polygon Containment and Minimum Enclosure
using only Robust 2D Constructions, Computational Geometry, 13(1):3-19, 1999.

MILENKOVIC, V. J. AND DANIELS, K. 1999. Translational Polygon Containment and
Minimal Enclosure using Mathematical Programming. Transactions in
Operational Research, 6:525-554, 1999.

MOORE, M. P. AND WILHELMS, J. 1988. Collision Detection and Response for
Computer Animation, In Computer Graphics (Proceedings of ACM SIGGRAPH
88), 22(4), ACM, 289--298.

RUSSELL, S AND NORVIG, P. 1994. Artificial Intelligence: A Modern Approach,
Prentice Hall, 1994.

SILVERS, R AND HAWLEY, M. 1997. Photomosaics, New York: Henry Holt, 1997.
STRAND, C. 1999. Hello, Fruit Face! : The Paintings of Guiseppe Arcimboldo,

Prestel, 1999.
WOLFSON, H. J. AND RIGOUTSOS, I. 1997. Geometric Hashing: An Overview. IEEE

Computational Science and Engineering, Vol. 4, No. 4, pp. 10-21.

a) Base case b) Lower color
weight

c) Lower overlap
weight

d) Tiles of
finer scales

Figure 10: Mosaics for various parameters.

662

Figure 11: Panda mosaic with 1367 tiles. Inset: segmentation.

Different scales of tiles are used to faithfully reproduce the fine details of the mouth of the panda.

Figure 12: Parrot mosaic with 1812 tiles. Inset: segmentation.

Additional edges are introduced to reproduce the parrot feathers and add leaves.

663

Figure 13: Kabuki mosaic with 4200 tiles. Inset: segmentation.

Colors are arbitrarily assigned for each segment.

664

