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ABSTRACT 
This paper introduces a new kind of mosaic, called Jigsaw 

Image Mosaic (JIM), where image tiles of arbitrary shape are used 
to compose the final picture. The generation of a Jigsaw Image 
Mosaic is a solution to the following problem: given an 
arbitrarily-shaped container image and a set of arbitrarily-shaped 
image tiles, fill the container as compactly as possible with tiles of 
similar color to the container taken from the input set while 
optionally deforming them slightly to achieve a more visually-
pleasing effect. We approach the problem by defining a mosaic as 
the tile configuration that minimizes a mosaicing energy function. 
We introduce a general energy-based framework for mosaicing 
problems that extends some of the existing algorithms such as 
Photomosaics and Simulated Decorative Mosaics. We also present 
a fast algorithm to solve the mosaicing problem at an acceptable 
computational cost. We demonstrate the use of our method by 
applying it to a wide range of container images and tiles. 
CR Categories: I.3.8 [Computer Graphics]: Application; I.3.5 
[Computational Geometry and Object Modeling]: Geometric algorithms, 
languages, and systems; J.5 [Arts and Humanities]: Fine arts  
Keywords: Mosaics, Morphing, Optimization 

1. INTRODUCTION 
Mosaics are a form of art in which a large image is formed by a 

collection of small images called tiles. Various mosaics can be 
created for an image depending on the choice of tiles and the 

restriction in their placement. Tile mosaics, for example, are 
images made by cementing together uniformly colored polygonal 
tiles carefully positioned to emphasize edges in the composite 
picture; Simulated Decorative Mosaics [Hausner 2001] is an 
algorithm that can generate tile mosaics. Photomosaics [Silvers 
and Hawley 1997] are a different kind of mosaic where a 
collection of small images is arranged in a rectangular grid in such 
a way that when they are seen together from a distance they 
suggest a larger image. Finally, Arcimboldo, a Renaissance Italian 
painter, was the self-proclaimed inventor of a form of painting 
called the composite head where faces are painted, not in flesh, 
but with rendered clumps of vegetables and other materials 
slightly deformed to better match the human features [Strand 
1999]. 

Inspired by Arcimboldo, we propose a new kind of mosaic 
where image tiles of arbitrary shape are used to compose the final 
arbitrarily-shaped picture. We called this new kind of mosaic 
Jigsaw Image Mosaic (JIM). Figure 1 illustrates the process of 
creating a JIM. Our algorithm takes as input a container image of 
arbitrary shape and a set of image tiles of arbitrary shape; it then 
packs the container as compactly as possible with tiles of similar 
color to the container taken from the input set while optionally 
deforming them slightly to achieve a more visually-pleasing 
effect. We can formally define the problem as follows: 

Problem (Jigsaw Image Mosaic): Given an arbitrarily-
shaped container image and a set of arbitrarily-shaped tiles 
{Ti}, find a set of shapes {Sj} such that  
• the union over the Sj resembles the container image as 

closely as possible; and 
• each Sj is a translated and rotated copy of one of the Ti, 

possibly incorporating a small deformation. 
In order to compute a JIM, we introduce a general energy-based 

framework for mosaicing problems, where a mosaic is defined as 
the tile configuration that minimizes a weighted sum of energy 
terms. By changing the weights in the energy formulation, various 
kinds of mosaics can be generated. Our framework generalizes 

 
Figure 1: The Jigsaw Image Mosaic (JIM) algorithm takes as input an arbitrarily-shaped container image and a set of image tiles 
of arbitrary shape (left) and generates a mosaic (right); it then packs the container as compactly as possible with tiles of similar 

color to the container taken from the input set while optionally deforming them slightly to achieve a more visually-pleasing effect.
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some of the existing mosaicing techniques previously presented in 
the computer graphics literature such as Photomosaics [Silvers 
and Hawley 1997] and Simulated Decorative Mosaics [Hausner 
2001]. A comparison of the images obtained by the three 
algorithms is presented in Figure 2. As with Photomosaics, our 
algorithm uses tiles containing smaller images. As in Simulated 
Decorative Mosaics, the Jigsaw Image Mosaics maintain 
important edges found in the container image; while the first 
algorithm does so by reorienting the tiles, our approach uses 
oriented tiles of the best-fitting shape as shown, for example, by 
the wedge-shaped tiles used in the sharp corners of the drops in 
Figure 2b and Figure 2c. The two algorithms use a segmentation 
of the original image in order to specify important edges. 

Our framework has three major advantages. First, a user can 
easily control the result image by changing the weights in the 
energy formulation. Second, we can introduce new mosaicing 
generation rules by introducing additional energy terms in the 
energy formulation. Finally, the mosaic generation and tile 
preparation is completely automatic requiring no user 
intervention. 

Since the Jigsaw Image Mosaic problem can be cast as an 
instance of an energy minimization problem, various algorithms 
such as simulated annealing could be employed to find a solution. 
Unfortunately, due to its high dimensional search space, most of 
the standard minimization techniques would demand too many 
resources to be run. This paper also presents a fast minimization 
algorithm tailored to solve the generalized mosaicing problem. 

We believe that the two major contributions of this paper are 
• an energy-based framework for the mosaicing problem which 

generalizes on known algorithms 
• an energy-minimization algorithm that solves the mosaicing 

problem at an acceptable computational cost 
Also, since our framework presents a general solution to �soft� 

packing problems, where small deformations are acceptable, our 
framework can be applied to feature-based texture synthesis and 
to various instances of product manufacturing. Mosaics are just 
one application. 

The rest of this paper is organized as follows: Section 2 
summarizes related work. In Section 3, we describe how to 
automatically prepare the required inputs. Sections 4 and 5 
address the energy minimization framework of the mosaicing 
problem, and the basic algorithm for the framework respectively. 
Section 6 presents optimization techniques on top of the basic 
algorithm. We present our results in Section 7, and close with 
discussion and future work in Section 8. 

2. RELATED WORK 
In the computer graphics literature, the works most closely 

related to our approach are the various mosaicing algorithms that 
can be categorized by the choice of tiles and the restriction on 
their placement. Photomosaics [Finkelstein and Range 1998; 
Silvers and Hawley 1997] are a collection of small images 
arranged in a rectangular grid in such a way that when they are 
viewed together from a distance they suggest a larger image (e.g. 
Figure 2d). For each rectangular block of pixels in the input 
image, the photomosaic algorithm searches a large database of 
tiles to find the one that most closely resembles the original block. 
The algorithm gives impressive results using only small resources, 
but unfortunately it is limited to square tiles on a rectangular grid. 
Simulated Decorative Mosaic [Hausner 2001] approaches the 
problem of aligning square tiles with varying orientations to 
preserve input image edges while maximizing the area covered by 
the colored tiles (e.g. Figure 2e). Our algorithm resembles that 
approach since it tries to maintain edges in the input image while 
maximizing coverage. Unfortunately, since we use tiles of 
different shapes, we cannot directly apply the Simulated 
Decorative Mosaic method for finding low-energy configurations. 
Our technique can compute the same results as these two 
algorithms, although its generality exacts a penalty in speed.  

Kaplan and Salesin [2000] presented a solution to the 
�Escherization" problem that finds a regular tiling using a closed 
figure that is as similar as possible to the original figure. Their 
work resembles our approach in that they slightly distort the 
original tile if necessary, but is different in that they seek regular 
tilings whereas we allow small gaps and overlaps. Haeberli [1990] 
randomly chose the tile positions, found the voronoi diagram of 
these positions, and filled each voronoi region with a color 
sampled from the underlying image. While his approach 
tessellates the main image using tiles of different shapes and 
completely arbitrary placements, the shapes are arbitrary and may 
not fit any of the given input tiles as required in our formulation. 

Another body of work related to our approach is the packing 
problem. The packing problem has been extensively studied in 
operations research and computational geometry with application 
to a broad spectrum of layout problems, such as for cloth, leather 
and glass. Since the packing problem is NP-hard [Milenkovic 
1999], numerous heuristics have been developed: boundary 
matching, database driven layout, or leftmost placement policy 
(See [Dowsland and Dowsland 1995] for an extensive survey). 
Recent work of Milenkovic and his colleagues [1999] combined 

a) Input image

b) JIM tile contours

roughly 400 tiles
from a database of 900 tiles

roughly 400 tiles 
from a database of 1100 photographs

roughly 400 tiles

c) Jigsaw Image Mosaic (JIM) d) Photomosaic e) Simulated Decorative Mosaic

Figure 2: Comparison of different mosaicing algorithms. 
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computational geometry and mathematical programming for 
dense packing of polygons. Their approach applied to marker 
layout problems achieves packing efficiencies comparable to 
those of human experts. Our problem differs from the standard 
packing problem in that our aim is not to achieve maximum-
density packing, but to reach aesthetically pleasing packing. 
Inspired by Arcimboldo, we allow a small user-specified 
deformation of the tiles when necessary, which is not allowed in 
the standard packing problem formulation. 

3. PREPARING INPUTS 
The JIM algorithm takes as input a container image of arbitrary 

shape and a set of tiles of arbitrary shape. The shape of tiles and 
container is represented by a polygon. Since we require a fairly 
high number of tiles, we need to be able to extract the shape of the 
tiles directly from the images themselves. We do so using active 
contours [Kass et al. 1987]. All of the 900 tiles used to generate 
the images in this paper are segmented completely automatically 
from clip art harvested from the Web. Active contours are also 
used to extract the container shape. 

 Hausner [2001] showed the importance of preserving important 
edges in the input image when generating a mosaic. Following his 
approach, we segment the input image to generate a set of disjoint 
arbitrarily-shaped containers. Since we preserve the edge of each 
container, the final composite will preserve the important edges 
on the input image. Figure 2c shows this behavior. Within each 
part of the segmentation, the algorithm runs independently. By 
allowing the user to input arbitrary segmentations, we can also 
introduce edges that are not present in the input image, but are 
important to maintain for the user. 

4. MOSAICING FRAMEWORK 
4.1 Problem formalization 
In order to achieve user controllable and extensible framework, 

we cast the problem of generating a mosaic in an energy 
minimization framework. We define a �tile configuration� as a 
subset of the input tiles with repetition, along with their associated 
transformations (translation, rotation, deformation). We say that a 
tile configuration is a Jigsaw Image Mosaic when it minimizes the 
energy E defined as  

 DDOOGGCC EwEwEwEwE ⋅+⋅+⋅+⋅= . (1) 
The energy is a weighted sum of various terms. Figure 3 

illustrates the behaviors of each of these energy terms in a simple 
example. The color energy term EC penalizes configurations that 
do not maintain the color of the input image. The gap energy term 
EG penalizes configurations that have too much empty space in the 
final image, called gap, while a big overlap between tiles gives 
large overlap energy EO. Finally, the deformation energy ED 
penalizes configurations where tiles are highly deformed.  

Inspired by Arcimboldo, we allow small deformations for each 
tile since we may not find a configuration where gaps or overlaps 

are small enough to achieve a pleasing visual effect. This is more 
likely to happen for smaller tile databases. Since collecting a large 
number of tiles may be a long process, we believe that allowing 
the user to specify the amount of deformation necessary makes the 
algorithm more usable. 

In order to compute a Photomosaic in our formulation, we can 
simply restrict the tile database to rectangular tiles and set the 
weights for gap, overlap and deformation to infinity. To compute 
a Simulated Decorative Mosaic, we restrict the database to square 
tiles with uniform color, where the colors are chosen from the 
palette of the input image, and segment the container to preserve 
edges. We then set the deformation weight to infinity and a very 
high overlap weight (note that Simulated Decorative Mosaics 
results have sometimes very small overlaps [Hausner 2001]) and 
moderately high gap weight. 

We believe that our formulation is fairly intuitive to use, since 
the user can easily adjust the weights in the energy function to 
obtain different results. It is also easily extensible, since we can 
add new energy terms in order to introduce additional rules for 
image generation. 

4.2 Energy terms evaluation 
The color energy EC is estimated by taking the average of the L2 

differences of the colors of the final image and the input container 
at random locations on the surface of the container. We evaluate 
this term for each tile separately to ensure a good sampling of the 
tile area.  

We evaluate gap EG and overlap EO energies using the spring 
energy formulation as originally employed to prevent bodies in 
resting contact from penetrating in rigid body simulations [Moore 
and Wilhelms 1988]. More specifically, each vertex of a tile is 
attached with a spring to the nearest edge of the other tiles or the 
container. If the signed distance d between the vertex and the 
anchor is positive, i.e. there is a gap between them, we add d2/2 to 
EG. On the other hand, if d is negative, i.e. the vertex penetrates 
the nearest edge, we add d2/2 to EO. 

The deformation energy ED is the sum of the deformation 
energies for each tile, which measures the difference in shape 
between the deformed tile and the original one. We evaluate ED in 
a similar way to the active contour model, given by 

      ∑ ∫ ′′′−′′′+′′−′′= =
k
i iiiiD dssTsDsTsDE 1

1
0

22 )()()()(
2
1 βα ,  (2) 

where Ti(s) and Di(s) are the original shape and the deformed 
shape of the i-th tile in the current solution, parameterized by s∈
[0,1]. The first term and the second term inside the integral 
measure the difference between the original tile and the deformed 
tile with respect to the stretching and flexing respectively, where α 
and β are sensitivity parameters. Among numerous shape metrics 
such as [Arkin et al. 1991], we choose the above one, since it 
provides good results in our case and it is easily integrated in our 
algorithm. 

� high gap 
energy ! discard

�high overlap 
energy ! discard

�high deformation
energy ! discard

�high color 
energy ! discard

Trying 2nd tile� Trying 3rd tile� Trying 4th tile� Trying 5th tile�Trying 1st tile�Container

Container to be 
filled

Container filled

Tiles

Legend
�lowest energy !

Accept

Color mismatch Gap region Overlap region Shape mismatch Accepted tile
 

Figure 3: Illustration of mosaicing energy terms. 
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5. BASIC MOSAICING ALGORITHM 
5.1 Overview 
To efficiently compute a Jigsaw Image Mosaic, we propose an 

effective algorithm organized in three phases shown in Figure 4. 
In the first phase, we choose and roughly place the tiles, ignoring 
deformation. In the second phase, we refine the placement of each 
tile and deform them if necessary. Finally in the third phase, we 
assemble the final mosaic by placing each tile in its position and 
warping each image to its final deformed shape using the image 
warping technique presented in [Arad et al. 1994]. Intuitively, this 
three-phase approach works in our case because the deformations 
we allow are always much smaller than the smallest tile in the 
database.  

5.2 Packing 
The first phase of the algorithm finds an approximately good 

configuration ignoring the deformation term, i.e. the configuration 
that minimizes the gap and overlaps in the image while 
maintaining the color, as measured by 

 OOGGCC EwEwEwE ⋅+⋅+⋅= . (3) 
To do so, we use a best first search [Russell and Norvig 1994]. 
Our algorithm places one tile at a time. For each new tile to place, 
we find a roughly suitable position in the container. We then 
search the database to determine which tile we should use, and 
determine the exact position and orientation of the tile in such a 
way that the tile is maximally aligned to the boundary of 
container, i.e., E in Equation 3 is minimized. This is a typical 
registration problem except that we register the tile to a part of the 
container, rather than the container itself. We will explain in more 
detail in Section 6 how to efficiently find a suitable spot using a 
centroidal voronoi diagram (CVD) [Lloyd 1982] and how to 
search the database using geometric hashing.  

After we place a tile, a new container is computed by 
subtracting the tile shape from the original container, as shown in 
Figure 5. The new container is used to place the next tile.  

We keep placing tiles until either the tiles completely fill out the 
container or we cannot find a suitable tile to fill a container. If this 
happens, we backtrack to the configuration that has minimal 
energy so far. Figure 6 illustrates the algorithm sequence. 

5.3 Refinement 
Even after finding the best possible tile arrangement, too much 

gap or overlap may remain and be aesthetically displeasing, 
especially when using a small number of tiles. Sometimes we can 
obtain a better looking result by slightly deforming the tiles to 
reduce gaps and overlaps significantly, as long as the deformation 
does not alter the original tile too much. While this generally 
produces better looking images, the user has the option to define 
the amount or skip deformation. 

The refinement phase of our approach solves this issue by 
deforming the tiles obtained from the packing stage, while 
balancing between maintaining the original tile shape as closely as 
possible and minimizing the gap, overlap and color differences 
(i.e. minimizing the full energy equation). We compute the final 
configuration using a set of active contours [Kass et al. 1987] 
interacting with each other. Intuitively, each vertex of a contour is 
subject to forces that tend to maintain the contour�s original shape 
and to repulse two contours if they penetrate, or attract them if 
there is gap between them. The tile configuration that minimizes 
E in Equation 1 must satisfy the following euler equation: 
        0=∇⋅+∇⋅+∇⋅+∇⋅ DDOOGGCC EwEwEwEw .     (4) 
∇EC is close to zero for our case since the deformations are much 
smaller than the smallest tile. For each vertex, ∇EG=2d⋅n if the 
vertex is in a gap (0 otherwise), where n is the unit vector 
perpendicular to the nearest edge, d is the signed distance to the 
nearest edge. ∇EO=2d⋅n if the vertex penetrates another tile (0 
otherwise). ∇EO makes the tile shrink if it is too big while ∇EG 
expands it if too small. The deformation term can be computed by 
differentiating Equation 2 for each vertex: 

 ( ) ( ))()()()( sTsDsTsDE iiiiD ′′′−′′′+′′−′′=∇ βα . (5) 

Phase 2:
Refining tiles

Phase 1:
Placing tiles

a) Initial container
image

b) Tile contours after
tile placement

c) Tile contours after
tile refinement

d) Final Jigsaw
Image Mosaic

Phase 3:
Adjusting images

Figure 4: Jigsaw Image Mosaic algorithm phases. 

Container Available Tiles

Place 1st tile Cannot place next 

Try again 1st tile

Backtrack

Place next Done

a b

c

 
Figure 6: Tile placement. 
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Figure 5: Container update. 
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Notice that Equation 5 is exactly the same energy formulation 
used for standard snakes but the �relaxed� state is defined as the 
original tile shape rather than a simple straight line. Also, external 
forces are determined not by an image (as in the standard snake), 
but by gap and overlap between tiles and with the container. The 
solution to the above equation can still be found by solving the 
discrete system iteratively [Amini 1990]. Figure 7 shows the 
evolution from the original tiles to the deformed ones. 

6. ALGORITHM OPTIMIZATIONS 
In the previous section, we presented the basic algorithm for tile 

placement. A naïve implementation would be too resource 
demanding so we present several optimization techniques in this 
section. The time complexity of the algorithm is roughly given by 
 ( )( )bNVNVO ainertileInContcontainertiletile +⋅⋅⋅⋅ 1 . (6) 
where Vtile is the number of vertices per tile, Ntile is the number of 
tiles in the database, Vcontainer is the number of vertices in 
container, NtileInContainer is the number of tiles in the container, and 
b is the overhead due to branching in the search tree 
(backtracking). In the following subsections we will introduce 
optimization for each of the factors in Equation 6. 

6.1 Placing a tile 
When placing a tile in a container of arbitrary shape, it would be 

prohibitive to try every possible location. As we mentioned 
before, we update the container after placing every tile. In order to 
reduce the branching overhead b, we try those locations that are 
most likely to make the container shape easier to fill after 
updating. Unfortunately this depends on which tile we place. 
Nevertheless, we can guess how the container would look after we 
put an �average� tile. A container will be easier to fill if it does 
not have a protrusion and is as convex as possible.  

Before placing a new tile, we construct a CVD, where each site 
has an area roughly equal to the average size of tiles (a similar 
technique has been previously used in [Hausner 2001]). We then 
select a random site among the ones that have the least number of 
neighbors, thus making the container as easy as possible to fill. 
Figure 8 shows the selection process. Notice that placing one tile 
at a time allows us to handle tiles with different sizes. Figure 2c, 
for instance, contains tiles that differ in size by 7 times. 

6.2 Branch-and-bound with look-ahead 
Every time we cannot find a suitable tile to fill a container, we 

need to backtrack to the configuration that has minimal energy so 
far. To reduce this branching overhead b, we use a look-ahead 
technique [Russell and Norvig 1994]. When placing a new tile, we 
penalize tiles that will make it harder to fill the container in the 
next iteration. To do this we add a term to the energy formulation 
that takes into account how the container will look after tile 
placement. Thus, the energy in Equation 3 becomes: 

 LALACCOOGG EwEwEwEwE ⋅+⋅+⋅+⋅= . (7) 
The container shape term advocates for containers with a small 
area and short circumference, or 

 ( ) 21 lengthwareawE AALA ⋅−+⋅= , (8) 
where area is the container�s area, length is its boundary length, 

and wA controls the weight of area in relation to the weight of 
length. Adding the container shape term in the energy evaluation 
prevents the algorithm from placing a tile that fits well but that 
leads to a harder-to-fill updated container.  

6.3 Container cleanup 
After we place a tile in a container, we update the container by 

subtracting the tile from the container. However, the new 
container can be very jagged, or even have disjoint regions. If 
these fragments are shallower than the shallowest tile, we know it 
can never be filled with any existing tile. In that case, it is safe to 
separate those fragments and consider them as a gap. This cleanup 
process reduces the running time by cutting the number of vertices 
in the container Vcontainer. It also reduces the branching overhead b, 
since it prevents the algorithm from wasting time attempting to fill 
unpromising fragments of the container.    

6.4 Geometric hashing 
Given a container and a location in the container, we need to try 

each tile in the database and their positions and orientations. Since 
the number of tiles is fairly high, a linear search would be 
prohibitive. To this end, we employ geometric hashing, a 
technique originally developed in computer vision for matching 
geometric features against a database of such features [Wolfson 
and Rigoutsos 97]. We use geometric hashing to select a few tiles 
that will suit to a particular position in the container. We then 
evaluate the energy term for them and pick the best fitting one. 
Intuitively we use geometric hashing as a pruning technique to 
reject bad tiles.  

In order to use geometric hashing, we will create a grid of 
squares in the plane in a preprocessing phase. Each square 
corresponds to a hash table entry. If a shape boundary crosses a 
square, we will record the tile ID and its orientation as an entry in 
the list attached to that hash table entry. In the preprocessing 
phase we place all tiles with all possible discrete orientations in 
the grid to build the hash table. Every time we need to place a new 
tile in a specific position in the container during the packing stage 
we register the container boundary segment to the hash table and 
access the hash table entries of the squares that the container 
passes through; for every entry found there, we cast a vote for the 
(tile ID, tile orientation) pair. We proceed to determine those 
entries that received more than a certain number of votes. Each 
such entry corresponds to a potential candidate. See Figure 9 for 
an illustration. This hashing technique reduces the time 
complexity of the algorithm from O(Ntile) to O(hgrid), where hgrid is 
the grid granularity. 

a) Bad tile: 15 votes b) Good tile: 22 votesLegend
Container 
contour
Tile contour
Container and 
tile contour 
overlap: 
cast a vote  

Figure 9: Geometric hashing for the 3rd and 5th tile in Figure 3.  

a) Initial 
contours

b) Intermediate 
contours

c) Converged 
contours

 
Figure 7: Evolution of active contours.  

CVD connected graph

CVD cells

Selected position:
only two neighbors 
in the CVD graph

Legend

 
Figure 8: Selecting a tile position by CVD. 
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7. RESULTS 
We have used our algorithm to produce a number of Jigsaw 

Image Mosaics using various container images. The images 
contained in this paper were generated from a database of 900 
tiles, some of which are from the Columbia Coil-100 dataset and 
Coolarchive.com. Size of the tiles varies by up to 8 times. It took 
about 10 minutes to 2 hours to generate the results.  

Figures 1 and 2 show that our algorithm faithfully reproduces 
colors and boundaries of letters and logos. Figure 10 shows three 
variations of the �J� mosaic in Figure 10a obtained by changing 
the parameters in the energy formulation. Figure 10b shows the 
result for a very low color weight. Figure 10c was computed 
allowing a large overlap between tiles. Figure 10d is a picture 
generated with tiles in different scales. These variations show how 
simply changing the weights in the energy function can generate 
different looking images that an artist can easily tweak.  

Figure 11 shows the result for a photograph of a panda. Given 
the container image and its segmentation, our algorithm 
reproduces the container image in a visually pleasing way. As in 
[Hausner 2001], we used the different scales of tiles to faithfully 
reproduce fine details of the containers, such as the mouth of the 
panda. Figure 12 shows a different example where the user draws 
additional edges to emphasize features of the picture, in this case 
the feathers of the parrot. As a result, our algorithm clearly 
reproduces the user-supplied features. Figure 13 shows an artistic 
picture of a kabuki, generated by preserving the edges of the 
original picture, but assigning different colors associated to each 
segment and a texture to the background.  

8. CONCLUSIONS AND FUTURE WORK 
In this paper, we have presented a general energy-based 

framework for mosaicing problems that generalizes some of the 
existing algorithms. We also introduce a new kind of mosaic, the 
Jigsaw Image Mosaic (JIM), where tiles and container are 
arbitrarily-shaped images. Finally we presented an effective 
algorithm to quickly compute a JIM. Our method produces good 
results, and is general enough to be applied to other �soft� packing 
problems such as texture synthesis and product manufacturing.  

This research suggests a number of directions for further study. 
Our current approach uses a search algorithm for packing. Even 
though it is effective because of the elaborate use of look-ahead 
technique and other optimizations, it is difficult to formally prove 
bounds on the energy of the final configuration. Approaches based 
on mathematical programming or computational geometry as in 
[Milenkovic and Daniels 1999] could be fruitful. Our framework 
could also be extended to 3D mosaic, where the container is a 3D 
object and the tiles can be 2D to fill out the surface of the 
container, or 3D to fill out the container itself. 
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Figure 10: Mosaics for various parameters. 
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Figure 11: Panda mosaic with 1367 tiles. Inset: segmentation. 

Different scales of tiles are used to faithfully reproduce the fine details of the mouth of the panda. 

 
Figure 12: Parrot mosaic with 1812 tiles. Inset: segmentation. 

Additional edges are introduced to reproduce the parrot feathers and add leaves. 
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Figure 13: Kabuki mosaic with 4200 tiles. Inset: segmentation. 

Colors are arbitrarily assigned for each segment. 
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