

Chapter 13

Randomized Algorithms

Randomization

Algorithmic design patterns.

- Greedy.
- Divide-and-conquer.
- Dynamic programming.
- Network flow.
- Randomization.
in practice, access to a pseudo-random number generator
Randomization. Allow fair coin flip in unit time.

Why randomize? Can lead to simplest, fastest, or only known algorithm for a particular problem.

Ex. Symmetry breaking protocols, graph algorithms, quicksort, hashing, load balancing, Monte Carlo integration, cryptography.

13.1 Contention Resolution

Contention Resolution in a Distributed System

Contention resolution. Given n processes P_{1}, \ldots, P_{n}, each competing for access to a shared database. If two or more processes access the database simultaneously, all processes are locked out. Devise protocol to ensure all processes get through on a regular basis.

Restriction. Processes can't communicate.

Challenge. Need symmetry-breaking paradigm.

Contention Resolution: Randomized Protocol

Protocol. Each process requests access to the database at time t with probability $p=1 / n$.

Claim. Let $S[i, \dagger]=$ event that process i succeeds in accessing the database at time t. Then $1 /(e \cdot n) \leq \operatorname{Pr}[S(i, t)] \leq 1 /(2 n)$.

Pf. By independence, $\operatorname{Pr}[S(i, t)]=p(1-p)^{n-1}$.

- Setting $p=1 / n$, we have $\operatorname{Pr}[S(i, t)]=1 / n(1-1 / n)^{n-1}$. .
value that maximizes $\operatorname{Pr}[S(i, t)] \quad \underbrace{1-1 / n) n-1}_{\text {between } 1 / \text { e and } 1 / 2}$

Useful facts from calculus. As n increases from 2, the function:

- ($1-1 / n)^{n}$ converges monotonically from $1 / 4$ up to $1 / e$
- ($1-1 / n)^{n-1}$ converges monotonically from $1 / 2$ down to $1 / e$.

Contention Resolution: Randomized Protocol

Claim. The probability that process i fails to access the database in en rounds is at most $1 / e$. After e. $n(c \ln n)$ rounds, the probability is at most n^{-c}.

Pf. Let $\mathrm{F}[\mathrm{i}, \dagger]=$ event that process i fails to access database in rounds 1 through t. By independence and previous claim, we have $\operatorname{Pr}[F(i, t)] \leq(1-1 /(e n))^{\dagger}$.

- Choose $t=\lceil e \cdot n\rceil$:

$$
\operatorname{Pr}[F(i, t)] \leq\left(1-\frac{1}{e n}\right)^{[e n]} \leq\left(1-\frac{1}{e n}\right)^{e n} \leq \frac{1}{e}
$$

- Choose $t=\lceil e \cdot n\rceil\lceil c \ln n\rceil: \quad \operatorname{Pr}[F(i, t)] \leq\left(\frac{1}{e}\right)^{c \ln n}=n^{-c}$

Contention Resolution: Randomized Protocol

Claim. The probability that all processes succeed within $2 e \cdot n \ln n$ rounds is at least $1-1 / n$.

Pf. Let $F[t]=$ event that at least one of the n processes fails to access database in any of the rounds 1 through t.

- Choosing $t=2$ [en $][c \ln n\rceil$ yields $\operatorname{Pr}[F[t]] \leq n \cdot n^{-2}=1 / n$. -

$$
\text { Union bound. Given events } E_{1}, \ldots, E_{n}, \quad \operatorname{Pr}\left[\bigcup_{i=1}^{n} E_{i}\right] \leq \sum_{i=1}^{n} \operatorname{Pr}\left[E_{i}\right]
$$

13.2 Global Minimum Cut

Global Minimum Cut

Global min cut. Given a connected, undirected graph $G=(V, E)$ find a cut (A, B) of minimum cardinality.

Applications. Partitioning items in a database, identify clusters of related documents, network reliability, network design, circuit design, TSP solvers.

Network flow solution.

- Replace every edge (u, v) with two antiparallel edges (u, v) and (v, u).
- Pick some vertex s and compute min $s-v$ cut separating s from each other vertex $v \in V$.

False intuition. Global min-cut is harder than min s-t cut.

Contraction Algorithm

Contraction algorithm. [Karger 1995]

- Pick an edge $e=(u, v)$ uniformly at random.
- Contract edge e.
- replace u and v by single new super-node w
- preserve edges, updating endpoints of u and v to w
- keep parallel edges, but delete self-loops
- Repeat until graph has just two nodes v_{1} and v_{2}.
- Return the cut (all nodes that were contracted to form v_{1}).

Contraction Algorithm

Claim. The contraction algorithm returns a min cut with prob $\geq 2 / n^{2}$.

Pf. Consider a global min-cut $\left(A^{*}, B^{\star}\right)$ of G. Let F^{*} be edges with one endpoint in A^{*} and the other in B^{*}. Let $k=\left|F^{*}\right|=$ size of min cut.

- In first step, algorithm contracts an edge in F^{*} probability $k /|E|$.
- Every node has degree $\geq k$ since otherwise (A^{*}, B^{\star}) would not be min-cut. $\Rightarrow|E| \geq \frac{1}{2} \mathrm{kn}$.
- Thus, algorithm contracts an edge in F^{*} with probability $\leq 2 / n$.

Contraction Algorithm

Claim. The contraction algorithm returns a min cut with prob $\geq 2 / n^{2}$.

Pf. Consider a global min-cut $\left(A^{*}, B^{*}\right)$ of G. Let F^{*} be edges with one endpoint in A^{*} and the other in B^{*}. Let $k=\left|F^{*}\right|=$ size of min cut.

- Let G^{\prime} be graph after j iterations. There are $n^{\prime}=n-j$ supernodes.
- Suppose no edge in F^{*} has been contracted. The min-cut in G^{\prime} is still k.
- Since value of min-cut is $k,\left|E^{\prime}\right| \geq \frac{1}{2} k n^{\prime}$.
- Thus, algorithm contracts an edge in F^{*} with probability $\leq 2 / n^{\prime}$.
- Let $E_{j}=$ event that an edge in F^{*} is not contracted in iteration j.

$$
\begin{aligned}
\operatorname{Pr}\left[E_{1} \cap E_{2} \cdots \cap E_{n-2}\right] & =\operatorname{Pr}\left[E_{1}\right] \times \operatorname{Pr}\left[E_{2} \mid E_{1}\right] \times \cdots \times \operatorname{Pr}\left[E_{n-2} \mid E_{1} \cap E_{2} \cdots \cap E_{n-3}\right] \\
& \geq\left(1-\frac{2}{n}\right)\left(1-\frac{2}{n-1}\right) \cdots\left(1-\frac{2}{4}\right)\left(1-\frac{2}{3}\right) \\
& =\left(\frac{n-2}{n}\right)\left(\frac{n-3}{n-1}\right) \cdots\left(\frac{2}{4}\right)\left(\frac{1}{3}\right) \\
& =\frac{2}{n(n-1)} \\
& \geq \frac{2}{n^{2}}
\end{aligned}
$$

Contraction Algorithm

Amplification. To amplify the probability of success, run the contraction algorithm many times.

Claim. If we repeat the contraction algorithm $n^{2} \ln n$ times with independent random choices, the probability of failing to find the global min-cut is at most $1 / n^{2}$.

Pf. By independence, the probability of failure is at most

$$
\begin{gathered}
\left(1-\frac{2}{n^{2}}\right)^{n^{2} \ln n}=\left[\left(1-\frac{2}{n^{2}}\right)^{\frac{1}{2} n^{2}}\right]_{\uparrow}^{2 \ln n} \leq\left(e^{-1}\right)^{2 \ln n}=\frac{1}{n^{2}} \\
\\
(1-1 / x)^{x} \leq 1 / e
\end{gathered}
$$

Global Min Cut: Context

Remark. Overall running time is slow since we perform $\Theta\left(n^{2} \log n\right)$ iterations and each takes $\Omega(m)$ time.

Improvement. [Karger-Stein 1996] $O\left(n^{2} \log ^{3} n\right)$.

- Early iterations are less risky than later ones: probability of contracting an edge in min cut hits 50% when $n / \int 2$ nodes remain.
- Run contraction algorithm until $n / \int 2$ nodes remain.
- Run contraction algorithm twice on resulting graph, and return best of two cuts.

Extensions. Naturally generalizes to handle positive weights.

Best known. [Karger 2000] $O\left(m \log ^{3} n\right)$.
\checkmark faster than best known max flow algorithm or deterministic global min cut algorithm

13.3 Linearity of Expectation

Expectation

Expectation. Given a discrete random variables X, its expectation $E[X]$ is defined by:

$$
E[X]=\sum_{j=0}^{\infty} j \operatorname{Pr}[X=j]
$$

Waiting for a first success. Coin is heads with probability p and tails with probability 1-p. How many independent flips X until first heads?

$$
E[X]=\sum_{j=0}^{\infty} j \cdot \operatorname{Pr}[X=j]=\sum_{j=0}^{\infty} j(1-p)^{j-1} p=\frac{p}{1-p} \sum_{j=0}^{\infty} j(1-p)^{j}=\frac{p}{1-p} \cdot \frac{1-p}{p^{2}}=\frac{1}{p}
$$

Expectation: Two Properties

Useful property. If X is a $0 / 1$ random variable, $E[X]=\operatorname{Pr}[X=1]$.
Pf. $E[X]=\sum_{j=0}^{\infty} j \cdot \operatorname{Pr}[X=j]=\sum_{j=0}^{1} j \cdot \operatorname{Pr}[X=j]=\operatorname{Pr}[X=1]$
not necessarily independent Linearity of expectation. Given two random variables X/and Y defined over the same probability space, $E[X+Y]=E[X]+E[Y]$.

Decouples a complex calculation into simpler pieces.

Guessing Cards

Game. Shuffle a deck of n cards; turn them over one at a time; try to guess each card.

Memoryless guessing. No psychic abilities; can't even remember what's been turned over already. Guess a card from full deck uniformly at random.

Claim. The expected number of correct guesses is 1.
Pf. (surprisingly effortless using linearity of expectation)

- Let $X_{i}=1$ if $i^{\text {th }}$ prediction is correct and 0 otherwise.
- Let $X=$ number of correct guesses $=X_{1}+\ldots+X_{n}$.
- $E\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]=1 / n$.
- $E[X]=E\left[X_{1}\right]+\ldots+E\left[X_{n}\right]=1 / n+\ldots+1 / n=1$..
linearity of expectation

Guessing Cards

Game. Shuffle a deck of n cards; turn them over one at a time; try to guess each card.

Guessing with memory. Guess a card uniformly at random from cards not yet seen.

Claim. The expected number of correct guesses is $\Theta(\log n)$.
Pf.

- Let $X_{i}=1$ if $i^{\text {th }}$ prediction is correct and 0 otherwise.
- Let $X=$ number of correct guesses $=X_{1}+\ldots+X_{n}$.
- $E\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]=1 /(n-i-1)$.

Coupon Collector

Coupon collector. Each box of cereal contains a coupon. There are n different types of coupons. Assuming all boxes are equally likely to contain each coupon, how many boxes before you have ≥ 1 coupon of each type?

Claim. The expected number of steps is $\Theta(n \log n)$.
Pf.

- Phase $\mathrm{j}=$ time between j and $\mathrm{j}+1$ distinct coupons.
- Let $X_{j}=$ number of steps you spend in phase j.
- Let $X=$ number of steps in total $=X_{0}+X_{1}+\ldots+X_{n-1}$.

$$
\begin{aligned}
E[X]= & \sum_{j=0}^{n-1} E\left[X_{j}\right]=\sum_{j=0}^{n-1} \frac{n}{n-j}=n \sum_{i=1}^{n} \frac{1}{i}=n H(n) \\
& \begin{array}{l}
\text { prob of success }=(n-j) / n \\
\\
\Rightarrow \text { expected waiting time }=n /(n-j)
\end{array}
\end{aligned}
$$

13.4 MAX 3-SAT

Maximum 3-Satisfiability

\swarrow exactly 3 distinct literals per clause
MAX-3SAT. Given 3-SAT formula, find a truth assignment that satisfies as many clauses as possible.

$$
\begin{aligned}
& C_{1}=x_{2} \vee \overline{x_{3}} \vee \overline{x_{4}} \\
& C_{2}=x_{2} \vee x_{3} \vee \overline{x_{4}} \\
& C_{3}=\overline{x_{1}} \vee x_{2} \vee x_{4} \\
& C_{4}=\overline{x_{1}} \vee \overline{x_{2}} \vee \frac{x_{3}}{C_{5}}=x_{1} \vee \overline{x_{2}} \vee \overline{x_{4}}
\end{aligned}
$$

Remark. NP-hard search problem.

Simple idea. Flip a coin, and set each variable true with probability $\frac{1}{2}$, independently for each variable.

Maximum 3-Satisfiability: Analysis

Claim. Given a 3-SAT formula with k clauses, the expected number of clauses satisfied by a random assignment is $7 \mathrm{k} / 8$.

Pf. Consider random variable $Z_{j}= \begin{cases}1 & \text { if clause } C_{j} \text { is satisfied } \\ 0 & \text { otherwise } .\end{cases}$

- Let $Z=$ weight of clauses satisfied by assignment Z_{j}.

$$
\begin{aligned}
E[Z] & =\sum_{j=1}^{k} E\left[Z_{j}\right] \\
\text { linearity of expectation } & =\sum_{j=1}^{k} \operatorname{Pr}\left[\text { clause } C_{j} \text { is satisfied }\right] \\
& =\frac{7}{8} k
\end{aligned}
$$

The Probabilistic Method

Corollary. For any instance of 3-SAT, there exists a truth assignment that satisfies at least a 7/8 fraction of all clauses.

Pf. Random variable is at least its expectation some of the time. -

Probabilistic method. We showed the existence of a non-obvious property of 3-SAT by showing that a random construction produces it with positive probability!

Maximum 3-Satisfiability: Analysis

Q. Can we turn this idea into a 7/8-approximation algorithm? In general, a random variable can almost always be below its mean.

Lemma. The probability that a random assignment satisfies $\geq 7 k / 8$ clauses is at least $1 /(8 k)$.

Pf. Let p_{j} be probability that exactly j clauses are satisfied; let p be probability that $\geq 7 \mathrm{k} / 8$ clauses are satisfied.

$$
\begin{aligned}
\frac{7}{8} k=E[Z] & =\sum_{j \geq 0} j p_{j} \\
& =\sum_{j<7 k / 8} j p_{j}+\sum_{j \geq 7 k / 8} j p_{j} \\
& \leq\left(\frac{7 k}{8}-\frac{1}{8}\right) \sum_{j<7 k / 8} p_{j}+k \sum_{j \geq 7 k / 8} p_{j} \\
& \leq\left(\frac{7}{8} k-\frac{1}{8}\right) \cdot 1+k p
\end{aligned}
$$

Rearranging terms yields $p \geq 1$ /(8k). -

Maximum 3-Satisfiability: Analysis

Johnson's algorithm. Repeatedly generate random truth assignments until one of them satisfies $\geq 7 k / 8$ clauses.

Theorem. Johnson's algorithm is a 7/8-approximation algorithm.

Pf. By previous lemma, each iteration succeeds with probability at least $1 /(8 k)$. By the waiting-time bound, the expected number of trials to find the satisfying assignment is at most 8 k . -

Maximum Satisfiability

Extensions.

- Allow one, two, or more literals per clause.
- Find max weighted set of satisfied clauses.

Theorem. [Asano-Williamson 2000] There exists a 0.784approximation algorithm for MAX-SAT.

Theorem. [Karloff-Zwick 1997, Zwick+computer 2002] There exists a 7/8-approximation algorithm for version of MAX-3SAT where each clause has at most 3 literals.

Theorem. [Håstad 1997] Unless $P=N P$, no ρ-approximation algorithm for MAX-3SAT (and hence MAX-SAT) for any $\rho>7 / 8$.
very unlikely to improve over simple randomized algorithm for MAX-3SAT

Monte Carlo vs. Las Vegas Algorithms

Monte Carlo algorithm. Guaranteed to run in poly-time, likely to find correct answer.
Ex: Contraction algorithm for global min cut.

Las Vegas algorithm. Guaranteed to find correct answer, likely to run in poly-time.
Ex: Randomized quicksort, Johnson's MAX-3SAT algorithm.

Remark. Can always convert a Las Vegas algorithm into Monte Carlo, but no known method to convert the other way.

RP and ZPP

RP. [Monte Carlo] Decision problems solvable with one-sided error in poly-time.

One-sided error.
Can decrease probability of false negative to 2^{-100} by 100 independent repetitions

- If the correct answer is no, always return no.
- If the correct answer is yes, return yes with probability $\geq \frac{1}{2}$.

ZPP. [Las Vegas] Decision problems solvable in expected poly-time.
running time can be unbounded, but on average it is fast

Theorem. $P \subseteq Z P P \subseteq R P \subseteq N P$.

Fundamental open questions. To what extent does randomization help? Does $P=Z P P$? Does $Z P P=R P$? Does RP = NP?

13.6 Universal Hashing

Dictionary Data Type

Dictionary. Given a universe U of possible elements, maintain a subset $S \subseteq U$ so that inserting, deleting, and searching in S is efficient.

Dictionary interface.

- Create (): Initialize a dictionary with $S=\phi$.
- Insert(u): Add element $u \in U$ to S.
- Delete (u): Delete u from S, if u is currently in S.
- Lookup (u): Determine whether u is in S.

Challenge. Universe U can be extremely large so defining an array of size $|U|$ is infeasible.

Applications. File systems, databases, Google, compilers, checksums P2P networks, associative arrays, cryptography, web caching, etc.

Hashing

Hash function. $h: U \rightarrow\{0,1, \ldots, n-1\}$.

Hashing. Create an array H of size n. When processing element u, access array element $H[h(u)]$.

Collision. When $h(u)=h(v)$ but $u \neq v$.

- A collision is expected after $\Theta(\sqrt{ } n)$ random insertions. This phenomenon is known as the "birthday paradox."
- Separate chaining: $H[i]$ stores linked list of elements u with $h(u)=i$.

Ad Hoc Hash Function

Ad hoc hash function.

```
int h(String s, int n) {
    int hash = 0;
    for (int i = 0; i < s.length(); i++)
        hash = (31 * hash) + s[i];
    return hash % n;
}
        hash function ala Java string library
```

Deterministic hashing. If $|U| \geq n^{2}$, then for any fixed hash function h, there is a subset $S \subseteq U$ of n elements that all hash to same slot. Thus, $\Theta(n)$ time per search in worst-case.
Q. But isn' \dagger ad hoc hash function good enough in practice?

Algorithmic Complexity Attacks

When can't we live with ad hoc hash function?

- Obvious situations: aircraft control, nuclear reactors.
- Surprising situations: denial-of-service attacks.
malicious adversary learns your ad hoc hash function (e.g., by reading Java API) and causes a big pile-up in a single slot that grinds performance to a halt

Real world exploits. [Crosby-Wallach 2003]

- Bro server: send carefully chosen packets to DOS the server, using less bandwidth than a dial-up modem
- Perl 5.8.0: insert carefully chosen strings into associative array.
- Linux 2.4.20 kernel: save files with carefully chosen names.

Hashing Performance

Idealistic hash function. Maps m elements uniformly at random to n hash slots.

- Running time depends on length of chains.
- Average length of chain $=\alpha=m / n$.
- Choose $n \approx m \Rightarrow$ on average O (1) per insert, lookup, or delete.

Challenge. Achieve idealized randomized guarantees, but with a hash function where you can easily find items where you put them.

Approach. Use randomization in the choice of h.

Universal Hashing

Universal class of hash functions. [Carter-Wegman 1980s]

- For any pair of elements $u, v \in U, \operatorname{Pr}_{h \in H}[h(u)=h(v)] \leq 1 / n$
- Can select random h efficiently. \chosen uniformly at random
- Can compute h(u) efficiently.

Ex. $U=\{a, b, c, d, e, f\}, n=2$.

	a	b	c	d	e	f
$h_{1}(x)$	0	1	0	1	0	1
$h_{2}(x)$	0	0	0	1	1	1

$$
\begin{aligned}
& H=\left\{h_{1}, h_{2}\right\} \\
& \operatorname{Pr}_{h \in H}[h(a)=h(b)]=1 / \\
& \operatorname{Pr}_{h \in H}[h(a)=h(c)]=1 \\
& \operatorname{Pr}_{h \in H}[h(a)=h(d)]=0
\end{aligned}
$$

$$
\operatorname{Pr}_{h \in H}[h(a)=h(b)]=1 / 2 \quad \text { not universal }
$$

	a	b	c	d	e	f
$h_{1}(x)$	0	1	0	1	0	1
$h_{2}(x)$	0	0	0	1	1	1
$h_{3}(x)$	0	0	1	0	1	1
$h_{4}(x)$	1	0	0	1	1	0

$$
\begin{aligned}
& H=\left\{h_{1}, h_{2}, h_{3}, h_{4}\right\} \\
& \operatorname{Pr}_{h \in H}[h(a)=h(b)]=1 / 2 \\
& \operatorname{Pr}_{h \in H}[h(a)=h(c)]=1 / 2 \\
& \operatorname{Pr}_{h \in H}[h(a)=h(d)]=1 / 2 \\
& \operatorname{Pr}_{h \in H}[h(a)=h(e)]=1 / 2 \\
& \operatorname{Pr}_{h \in H}[h(a)=h(f)]=0
\end{aligned}
$$

Universal Hashing

Universal hashing property. Let H be a universal class of hash functions; let $h \in H$ be chosen uniformly at random from H; and let $u \in U$. For any subset $S \subseteq U$ of size at most n, the expected number of items in S that collide with u is at most 1 .

Pf. For any element $s \in S$, define indicator random variable $X_{s}=1$ if $h(s)=h(u)$ and 0 otherwise. Let X be a random variable counting the total number of collisions with u.

Designing a Universal Family of Hash Functions

Theorem. [Chebyshev 1850] There exists a prime between n and $2 n$.

Modulus. Choose a prime number $p \approx n$. \longleftarrow no need for randomness here

Integer encoding. Identify each element $u \in U$ with a base-p integer of r digits: $x=\left(x_{1}, x_{2}, \ldots, x_{r}\right)$.

Hash function. Let $A=$ set of all r-digit, base-p integers. For each $a=\left(a_{1}, a_{2}, \ldots, a_{r}\right)$ where $0 \leq a_{i}<p$, define

$$
h_{a}(x)=\left(\sum_{i=1}^{r} a_{i} x_{i}\right) \bmod p
$$

Hash function family. $H=\left\{h_{a}: a \in A\right\}$.

Designing a Universal Class of Hash Functions

Theorem. $H=\left\{h_{a}: a \in A\right\}$ is a universal class of hash functions.
Pf. Let $x=\left(x_{1}, x_{2}, \ldots, x_{r}\right)$ and $y=\left(y_{1}, y_{2}, \ldots, y_{r}\right)$ be two distinct elements of
U. We need to show that $\operatorname{Pr}\left[h_{a}(x)=h_{a}(y)\right] \leq 1 / n$.

- Since $x \neq y$, there exists an integer j such that $x_{j} \neq y_{j}$.
- We have $h_{a}(x)=h_{a}(y)$ iff

$$
a_{j} \underbrace{\left(y_{j}-x_{j}\right)}_{z}=\underbrace{\sum_{i \neq j} a_{i}\left(x_{i}-y_{i}\right)}_{m} \bmod p
$$

- Can assume a was chosen uniformly at random by first selecting all coordinates a_{i} where $i \neq j$, then selecting a_{j} at random. Thus, we can assume a_{i} is fixed for all coordinates $i \neq j$.
- Since p is prime, $a_{j} z=m$ mod p has at most one solution among p possibilities. \leftarrow see lemma on next slide
- Thus $\operatorname{Pr}\left[h_{a}(x)=h_{a}(y)\right]=1 / p \leq 1 / n$. -

Number Theory Facts

Fact. Let p be prime, and let $z \neq 0 \bmod p$. Then $\alpha z=m \bmod p$ has at most one solution $0 \leq \alpha<p$.

Pf.

- Suppose α and β are two different solutions.
- Then $(\alpha-\beta) z=0 \bmod p$; hence $(\alpha-\beta) z$ is divisible by p.
- Since $z \neq 0 \bmod p$, we know that z is not divisible by p; it follows that $(\alpha-\beta)$ is divisible by p.
- This implies $\alpha=\beta$. -

Bonus fact. Can replace "at most one" with "exactly one" in above fact. Pf idea. Euclid's algorithm.

13.9 Chernoff Bounds

Chernoff Bounds (above mean)

Theorem. Suppose X_{1}, \ldots, X_{n} are independent 0-1 random variables. Let $X=X_{1}+\ldots+X_{n}$. Then for any $\mu \geq E[X]$ and for any $\delta>0$, we have

$$
\operatorname{Pr}[X>(1+\delta) \mu]<\left[\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right]^{\mu}
$$

sum of independent 0-1 random variables is tightly centered on the mean

Pf. We apply a number of simple transformations.

- For any $\dagger>0$,

$$
\begin{aligned}
\operatorname{Pr}[X>(1+\delta) \mu]=\operatorname{Pr}\left[e^{t X}>e^{t(1+\delta) \mu}\right] & \leq e^{-t(1+\delta) \mu} \cdot E\left[e^{t X}\right] \\
\uparrow & \uparrow \\
f(x)=e^{+x} \text { is monotone in } x & \text { Markov's inequality: } \operatorname{Pr}[X>a] \leq E[X] / a
\end{aligned}
$$

- Now $E\left[e^{t X}\right]=E\left[e^{t \sum_{i} X_{i}}\right]=\prod_{i} E\left[e^{t X_{i}}\right]$
definition of $X \quad$ independence

Chernoff Bounds (above mean)

Pf. (cont)

- Let $\mathrm{p}_{\mathrm{i}}=\operatorname{Pr}\left[\mathrm{X}_{\mathrm{i}}=1\right]$. Then,

$$
\begin{array}{r}
E\left[e^{t X_{i}}\right]=p_{i} e^{t}+\left(1-p_{i}\right) e^{0}=1+p_{i}\left(e^{t}-1\right) \leq e^{p_{i}\left(e^{t}-1\right)} \\
\text { for any } \alpha \geq 0,1+\alpha \leq e^{\alpha}
\end{array}
$$

- Combining everything:

- Finally, choose $t=\ln (1+\delta)$.

Chernoff Bounds (below mean)

Theorem. Suppose X_{1}, \ldots, X_{n} are independent 0-1 random variables. Let $X=X_{1}+\ldots+X_{n}$. Then for any $\mu \leq E[X]$ and for any $0<\delta<1$, we have

$$
\operatorname{Pr}[X<(1-\delta) \mu]<e^{-\delta^{2} \mu / 2}
$$

Pf idea. Similar.

Remark. Not quite symmetric since only makes sense to consider $\delta<1$.

13.10 Load Balancing

Load Balancing

Load balancing. System in which m jobs arrive in a stream and need to be processed immediately on n identical processors. Find an assignment that balances the workload across processors.

Centralized controller. Assign jobs in round-robin manner. Each processor receives at most $\lceil\mathrm{m} / \mathrm{n}\rceil$ jobs.

Decentralized controller. Assign jobs to processors uniformly at random. How likely is it that some processor is assigned "too many" jobs?

Load Balancing

Analysis.

- Let $X_{i}=$ number of jobs assigned to processor i.
- Let $Y_{i j}=1$ if job j assigned to processor i, and 0 otherwise.
- We have $E\left[Y_{i j}\right]=1 / n$
- Thus, $X_{i}=\sum_{j} Y_{i j}$, and $\mu=E\left[X_{i}\right]=1$.
- Applying Chernoff bounds with $\delta=c-1$ yields $\operatorname{Pr}\left[X_{i}>c\right]<\frac{e^{c-1}}{c^{c}}$
- Let $\gamma(n)$ be number x such that $x^{x}=n$, and choose $c=e \gamma(n)$.

$$
\operatorname{Pr}\left[X_{i}>c\right]<\frac{e^{c-1}}{c^{c}}<\left(\frac{e}{c}\right)^{c}=\left(\frac{1}{\gamma(n)}\right)^{e \gamma(n)}<\left(\frac{1}{\gamma(n)}\right)^{2 \gamma(n)}=\frac{1}{n^{2}}
$$

- Union bound \Rightarrow with probability $\geq 1-1 / n$ no processor receives more than e $\gamma(n)=\Theta(\log n / \log \log n)$ jobs.

Fact: this bound is asymptotically tight: with high probability, some processor receives $\Theta(\operatorname{logn} / \log \log n)$

Load Balancing: Many Jobs

Theorem. Suppose the number of jobs $m=16 n \ln n$. Then on average, each of the n processors handles $\mu=16 \ln n$ jobs. With high probability every processor will have between half and twice the average load.

Pf.

- Let $X_{i}, Y_{i j}$ be as before.
- Applying Chernoff bounds with $\delta=1$ yields

$$
\operatorname{Pr}\left[X_{i}>2 \mu\right]<\left(\frac{e}{4}\right)^{16 n \ln n}<\left(\frac{1}{e}\right)^{\ln n}=\frac{1}{n^{2}} \quad \operatorname{Pr}\left[X_{i}<\frac{1}{2} \mu\right]<e^{-\frac{1}{2}\left(\frac{1}{2}\right)^{2}(16 n \ln n)}=\frac{1}{n^{2}}
$$

- Union bound \Rightarrow every processor has load between half and twice the average with probability $\geq 1-2 / n$. -

Extra Slides

13.5 Randomized Divide-and-Conquer

Quicksor \dagger

Sorting. Given a set of n distinct elements S, rearrange them in ascending order.

```
RandomizedQuicksort(S) {
    if |S| = O return
    choose a splitter a }\mp@subsup{a}{i}{}\inS\mathrm{ uniformly at random
    foreach (a G S) {
        if (a< ai) put a in S
        else if (a > a i ) put a in S'
    }
    RandomizedQuicksort(S`)
    output ai
    RandomizedQuicksort(S')
}
```

Remark. Can implement in-place.

```
                        O(logn) extra space
```


Quicksor \dagger

Running time.

- [Best case.] Select the median element as the splitter: quicksort makes $\Theta(n \log n)$ comparisons.
- [Worst case.] Select the smallest element as the splitter: quicksort makes $\Theta\left(n^{2}\right)$ comparisons.

Randomize. Protect against worst case by choosing splitter at random.

Intuition. If we always select an element that is bigger than 25% of the elements and smaller than 25% of the elements, then quicksort makes $\Theta(n \log n)$ comparisons.

Notation. Label elements so that $x_{1}<x_{2}<\ldots<x_{n}$.

Quicksort: BST Representation of Splitters

BST representation. Draw recursive BST of splitters.

Quicksort: BST Representation of Splitters

Observation. Element only compared with its ancestors and descendants.

- x_{2} and x_{7} are compared if their Ica $=x_{2}$ or x_{7}.
- x_{2} and x_{7} are not compared if their Ica $=x_{3}$ or x_{4} or x_{5} or x_{6}.

Claim. $\operatorname{Pr}\left[x_{i}\right.$ and x_{j} are compared $]=2 /|j-i+1|$.

Quicksort: Expected Number of Comparisons

Theorem. Expected \# of comparisons is $O(n \log n)$.
Pf.

$$
\sum_{1 \leq i<j \leq n} \frac{2}{j-i+1}=2 \sum_{i=1}^{n} \sum_{j=2}^{i} \frac{1}{j} \leq 2 n \sum_{j=1}^{n} \frac{1}{j} \approx 2 n \int_{x=1}^{n} \frac{1}{x} d x=2 n \ln n
$$

probability that i and j are compared

Theorem. [Knuth 1973] Stddev of number of comparisons is $\sim 0.65 \mathrm{~N}$.
Ex. If $n=1$ million, the probability that randomized quicksort takes less than $4 n \ln n$ comparisons is at least 99.94%.

Chebyshev's inequality. $\operatorname{Pr}[|X-\mu| \geq k \delta] \leq 1 / k^{2}$.

