
Q. Suppose I need to solve an NP-hard problem. What should I do?
A. Theory says you're unlikely to find a poly-time algorithm.

Must sacrifice one of three desired features.

- Solve problem to optimality
- Solve problem in poly-time.
- Solve arbitrary instances of the problem.
ρ-approximation algorithm.
- Guaranteed to run in poly-time.
- Guaranteed to solve arbitrary instance of the problem
- Guaranteed to find solution within ratio ρ of true optimum.

Challenge. Need to prove a solution's value is close to optimum, without even knowing what optimum value is!

Load Balancing

11.1 Load Balancing

Input. m identical machines; n jobs, job j has processing time \dagger_{j}.

- Job j must run contiguously on one machine.
- A machine can process at most one job at a time.

Def. Let $J(i)$ be the subset of jobs assigned to machine i. The load of machine i is $L_{i}=\Sigma_{j \in J(i)} \dagger_{j}$.

Def. The makespan is the maximum load on any machine $L=\max _{i} L_{i}$.

List-scheduling algorithm.

- Consider n jobs in some fixed order.
- Assign job j to machine whose load is smallest so far.

```
List-Scheduling(m, n, th, th,\ldots.t t )
    for i = 1 to m {
        \mp@subsup{L}{i}{}}\leftarrow0< & load on machine i
        J(i)}\leftarrow\phi\leftarrow\mathrm{ jobs assigned to machine i
    }
    for j = 1 to n {
```



```
    }
    return J(1), ..., J(m)
}
```

Implementation. $O(n \log m$) using a priority queue.

Load Balancing: List Scheduling Analysis

Theorem. Greedy algorithm is a 2-approximation.
Pf. Consider load L_{i} of bottleneck machine i.

- Let j be last job scheduled on machine i.
- When job j assigned to machine i, i had smallest load. Its load before assignment is $L_{i}-t_{j} \Rightarrow L_{i}-t_{j} \leq L_{k}$ for all $1 \leq k \leq m$.

Theorem. [Graham, 1966] Greedy algorithm is a 2-approximation.

- First worst-case analysis of an approximation algorithm.
- Need to compare resulting solution with optimal makespan L*.

Lemma 1. The optimal makespan $L^{*} \geq \max _{j} \dagger_{j}$.
Pf. Some machine must process the most time-consuming job. -

Lemma 2. The optimal makespan $L^{*} \geq \frac{1}{m} \sum_{j} t_{j}$. Pf.

- The total processing time is $\Sigma_{j} \dagger_{j}$.
. One of m machines must do at least a $1 / \mathrm{m}$ fraction of total work.

Theorem. Greedy algorithm is a 2-approximation.
Pf. Consider load L_{i} of bottleneck machine i.

- Let j be last job scheduled on machine i.
- When job j assigned to machine i, i had smallest load. Its load before assignment is $L_{i}-t_{j} \Rightarrow L_{i}-t_{j} \leq L_{k}$ for all $1 \leq k \leq m$.
- Sum inequalities over all k and divide by m :

$$
\begin{aligned}
L_{i}-t_{j} & \leq \frac{1}{m} \sum_{k} L_{k} \\
& =\frac{1}{m} \sum_{k} t_{k} \\
\text { Lemma } 1 \rightarrow & \leq L^{*}
\end{aligned}
$$

- Now $L_{i}=\underbrace{\left(L_{i}-t_{j}\right)}_{\leq L^{*}}+\underbrace{t_{j}}_{\leq L^{*}} \leq 2 L^{*}$. .
\uparrow
Lemma 2
Q. Is our analysis tight?
A. Essentially yes.

Ex: m machines, $m(m-1)$ jobs length 1 jobs, one job of length m

list scheduling makespan $=19$

Load Balancing: LPT Rule

Longest processing time (LPT). Sort n jobs in descending order of processing time, and then run list scheduling algorithm.

```
LPT-List-Scheduling(m, n, tri, th,\ldots, th) {
    Sort jobs so that t}\mp@subsup{t}{1}{}\geq\mp@subsup{t}{2}{}\geq\ldots\geq\mp@subsup{t}{n}{
    for i = 1 to m {
        L
        J(i)}\leftarrow\phi\leftarrow\mathrm{ jobs assigned to machine i
    }
    for j = 1 to n {
        i = argmin}\mp@subsup{\textrm{m}}{\textrm{k}}{\mathbf{L}
        J(i) \leftarrowJ(i) U {j} \leftarrow assign job j to machine i
            \leftarrow assign job j to machine i
        Li
    }
    return J(1), ..., J(m)
}
```

Q. Is our analysis tight?
A. Essentially yes.

Ex: m machines, $m(m-1)$ jobs length 1 jobs, one job of length m

optimal makespan $=10$

Load Balancing: LPT Rule

Observation. If at most m jobs, then list-scheduling is optimal. Pf. Each job put on its own machine. -

Lemma 3. If there are more than m jobs, $L^{*} \geq 2 \dagger_{m+1}$. Pf.

- Consider first $m+1$ jobs t_{1}, \ldots, t_{m+1}.
- Since the \dagger_{i} 's are in descending order, each takes at least t_{m+1} time.
- There are $m+1$ jobs and m machines, so by pigeonhole principle, at least one machine gets two jobs. -

Theorem. LPT rule is a $3 / 2$ approximation algorithm. Pf. Same basic approach as for list scheduling.

$$
L_{i}=\underbrace{\left(L_{i}-t_{j}\right)}_{\leq L^{*}}+\underbrace{t_{j}}_{\substack{\leq \frac{1}{2} L^{*} \\ \uparrow \\ \text { Lemma } 3 \\ \text { (by observation, can assume number of jobs }>m \text {) }}} \leq \frac{3}{2} L^{*} . \quad .
$$

Q. Is our $3 / 2$ analysis tight?
A. No.

Theorem. [Graham, 1969] LPT rule is a 4/3-approximation.
Pf. More sophisticated analysis of same algorithm.
Q. Is Graham's 4/3 analysis tight?
A. Essentially yes.

Ex: m machines, $n=2 m+1$ jobs, 2 jobs of length $m+1, m+2, \ldots, 2 m-1$ and one job of length m.

Center Selection Problem

Input. Set of n sites s_{1}, \ldots, s_{n} and integer $k>0$.
Center selection problem. Select k centers C so that maximum distance from a site to nearest center is minimized.

11.2 Center Selection

Input. Set of n sites s_{1}, \ldots, s_{n} and integer $k>0$.
Center selection problem. Select k centers C so that maximum distance from a site to nearest center is minimized.

Notation.

- $\operatorname{dist}(x, y)=$ distance between x and y.
- $\operatorname{dist}\left(s_{i}, C\right)=\min _{c \in C} \operatorname{dist}\left(s_{i}, c\right)=$ distance from s_{i} to closest center.
- $r(C)=$ max $_{i} \operatorname{dist}\left(s_{i}, C\right)=$ smallest covering radius.

Goal. Find set of centers C that minimizes $r(C)$, subject to $|C|=k$.
Distance function properties.

- $\operatorname{dist}(x, x)=0$
- $\operatorname{dist}(x, y)=\operatorname{dist}(y, x)$
- $\operatorname{dist}(x, y) \leq \operatorname{dist}(x, z)+\operatorname{dist}(z, y)$
(identity)
(symmetry)
(triangle inequality)

Ex: each site is a point in the plane, a center can be any point in the plane, $\operatorname{dist}(x, y)=$ Euclidean distance.

Remark: search can be infinite!

Center Selection: Greedy Algorithm

Greedy algorithm. Repeatedly choose the next center to be the site farthest from any existing center.

```
Greedy-Center-Selection(k, n, s
    C = \phi
    repeat k times {
        Select a site si
        Add si
    }
        site farthest from any center
    return C
}
```

Observation. Upon termination all centers in C are pairwise at least $r(C)$ apart.
Pf. By construction of algorithm.

Greedy algorithm. Put the first center at the best possible location for a single center, and then keep adding centers so as to reduce the covering radius each time by as much as possible.

Remark: arbitrarily bad!

Center Selection: Analysis of Greedy Algorithm

Theorem. Let C^{\star} be an optimal set of centers. Then $r(C) \leq 2 r\left(C^{\star}\right)$. Pf. (by contradiction) Assume $r\left(C^{\star}\right)<\frac{1}{2} r(C)$.

- For each site c_{i} in C, consider ball of radius $\frac{1}{2} r(C)$ around it.
- Exactly one c_{i}^{*} in each ball; let c_{i} be the site paired with c_{i}^{*}.
- Consider any site s and its closest center c_{i}^{*} in C^{\star}.
- $\operatorname{dist}(s, C) \leq \operatorname{dist}\left(s, c_{i}\right) \leq \operatorname{dist}\left(s, c_{i}^{*}\right)+\operatorname{dist}\left(c_{i}^{*}, c_{i}\right) \leq 2 r\left(C^{\star}\right)$.
- Thus $r(C) \leq 2 r\left(C^{\star}\right)$. .
Δ-inequality $>$
$\leq r\left(C^{\star}\right)$ since c_{i}^{\star} is closest center

Theorem. Let C^{\star} be an optimal set of centers. Then $r(C) \leq 2 r\left(C^{\star}\right)$.
Theorem. Greedy algorithm is a 2-approximation for center selection problem.

Remark. Greedy algorithm always places centers at sites, but is still within a factor of 2 of best solution that is allowed to place centers anywhere.
e.g., points in the plane

Question. Is there hope of a 3/2-approximation? 4/3?

Theorem. Unless $P=N P$, there no ρ-approximation for center-selection problem for any $\rho<2$.

Weighted Vertex Cover

Weighted vertex cover. Given a graph G with vertex weights, find a vertex cover of minimum weight.

weight $=2+2+4$

weight $=9$

11.4 The Pricing Method: Vertex Cover

Pricing method. Each edge must be covered by some vertex. Edge $e=(i, j)$ pays price $p_{e} \geq 0$ to use vertex i and j.

Fairness. Edges incident to vertex i should pay $\leq w_{i}$ in total.

$$
\text { for each vertex } i: \sum_{e=(i, j)} p_{e} \leq w_{i}
$$

Lemma. For any vertex cover S and any fair prices $p_{e}: \sum_{e} p_{e} \leq w(S)$. Pf.

$$
\begin{aligned}
& \sum_{e \in E} p_{e} \leq \sum_{i \in S} \sum_{e=(i, j)} p_{e} \leq \sum_{i \in S} w_{i}=w(S) . \\
& \begin{array}{ll}
\text { each edge e covered by } \\
\text { at least one node in } S
\end{array} \\
& \quad \begin{array}{l}
\text { sum fairness inequalities } \\
\text { for each node in } S
\end{array}
\end{aligned}
$$

Pricing method. Set prices and find vertex cover simultaneously.
}

```
```

Weighted-Vertex-Cover-Approx (G, w) {

```
Weighted-Vertex-Cover-Approx (G, w) {
    foreach e in E
    foreach e in E
        pe}=
        pe}=
        \sum\mp@code{ei,j)}
        \sum\mp@code{ei,j)}
        \sum=(i,j)
        \sum=(i,j)
    while (\exists edge i-j such that neither i nor j are tight)
    while (\exists edge i-j such that neither i nor j are tight)
        select such an edge e
        select such an edge e
        increase }\mp@subsup{p}{e}{}\mathrm{ as much as possible until i or j tight
        increase }\mp@subsup{p}{e}{}\mathrm{ as much as possible until i or j tight
    }
    }
    S \leftarrow set of all tight nodes
    S \leftarrow set of all tight nodes
    return S
```

 return S
    ```


\section*{Pricing Method: Analysis}

Theorem. Pricing method is a 2-approximation
Pf.
- Algorithm terminates since at least one new node becomes tight after each iteration of while loop.
- Let \(S=\) set of all tight nodes upon termination of algorithm. \(S\) is a vertex cover: if some edge \(i-j\) is uncovered, then neither \(i\) nor \(j\) is tight. But then while loop would not terminate.
- Let \(S^{\star}\) be optimal vertex cover. We show \(w(S) \leq 2 w\left(S^{\star}\right)\).
\[
\begin{aligned}
& w(S)=\sum_{i \in S} w_{i}=\sum_{i \in S} \sum_{e=(i, j)} p_{e} \leq \sum_{i \in V} \sum_{e=(i, j)} p_{e}=2 \sum_{e \in E} p_{e} \leq 2 w\left(S^{*}\right) . \\
& \uparrow^{\uparrow \in S} \uparrow^{\sum_{e=(i, j)}} \uparrow^{e=(i, j)}{ }^{e \in E} \uparrow \\
& \text { all nodes in S are tight } \begin{array}{c}
\mathrm{S} \subseteq \mathrm{~V}, \\
\text { prices } \geq 0
\end{array} \quad \text { each edge counted twice fairness lemma }
\end{aligned}
\]
11.6 LP Rounding: Vertex Cover

Weighted vertex cover. Given an undirected graph \(G=(V, E)\) with vertex weights \(w_{i} \geq 0\), find a minimum weight subset of nodes \(S\) such that every edge is incident to at least one vertex in \(S\).

total weight \(=55\)

\section*{Weighted Vertex Cover: IP Formulation}

Weighted vertex cover. Integer programming formulation.
\[
\begin{array}{rlll}
(I L P) \min & \sum_{i \in V} w_{i} x_{i} & \\
\text { s.t. } & x_{i}+x_{j} & \geq 1 & (i, j) \in E \\
& x_{i} & \in\{0,1\} & i \in V
\end{array}
\]

Observation. If \(x^{\star}\) is optimal solution to (ILP), then \(S=\left\{i \in V: x^{\star}{ }_{i}=1\right\}\) is a min weight vertex cover.

Weighted vertex cover. Given an undirected graph \(G=(V, E)\) with vertex weights \(w_{i} \geq 0\), find a minimum weight subset of nodes \(S\) such that every edge is incident to at least one vertex in \(S\).

Integer programming formulation.
- Model inclusion of each vertex i using a 0/1 variable \(x_{i}\).
\[
x_{i}= \begin{cases}0 & \text { if vertex } i \text { is not in vertex cover } \\ 1 & \text { if vertex } i \text { is in vertex cover }\end{cases}
\]

Vertex covers in 1-1 correspondence with 0/1 assignments: \(S=\left\{i \in V: x_{i}=1\right\}\)
- Objective function: maximize \(\Sigma_{\mathrm{i}} \mathrm{w}_{\mathrm{i}} x_{\mathrm{i}}\).
- Must take either i or \(\mathrm{j}: x_{i}+x_{j} \geq 1\).

\section*{Integer Programming}

INTEGER-PROGRAMMING. Given integers \(a_{i j}\) and \(b_{i}\), find integers \(x_{j}\) that satisfy:
```

max c}\mp@subsup{c}{}{t}
s.t. }Ax\geq
integral

```
```

\mp@subsup{\sum}{j=1}{n}\mp@subsup{a}{ij}{}\mp@subsup{x}{j}{}\geq\mp@subsup{b}{i}{}\quad1\leqi\leqm
x
\mp@subsup{x}{j}{}}\quad\mathrm{ integral 1 1 j j n

```

Observation. Vertex cover formulation proves that integer
programming is NP-hard search problem.
even if all coefficients are \(0 / 1\) and
at most two variables per inequality programming is NP-har

Linear programming. Max/min linear objective function subject to linear inequalities.
- Input: integers \(c_{j}, b_{i}, a_{i j}\).
- Output: real numbers \(x_{j}\).
(P) \(\max c^{t} x\)
\[
\text { s.t. } A x \geq b
\]
\[
x \geq 0
\]
(P) \(\max \sum_{j=1}^{n} c_{j} x_{j}\)
s. t. \(\sum_{j=1}^{n} a_{i j} x_{j} \geq b_{i} \quad 1 \leq i \leq m\)
\(x_{j} \geq 0 \quad 1 \leq j \leq n\)

Linear. No \(x^{2}, x y, \arccos (x), x(1-x)\), etc.

Simplex algorithm. [Dantzig 1947] Can solve LP in practice.
Ellipsoid algorithm. [Khachian 1979] Can solve LP in poly-time.

\section*{Weighted Vertex Cover: LP Relaxation}

\section*{Weighted vertex cover. Linear programming formulation.}
\[
\begin{array}{rll}
(L P) \min & \sum_{i \in V} w_{i} x_{i} & \\
\text { s.t. } & x_{i}+x_{j} & \geq 1 \quad(i, j) \in E \\
& x_{i} & \geq 0 \quad i \in V
\end{array}
\]

Observation. Optimal value of (LP) is soptimal value of (ILP).
Pf. LP has fewer constraints.

Note. LP is not equivalent to vertex cover.
Q. How can solving LP help us find a small vertex cover?

A. Solve LP and round fractional values.

LP geometry in 2D.


\section*{Weighted Vertex Cover}

Theorem. If \(x^{\star}\) is optimal solution to (LP), then \(S=\left\{i \in V: x^{\star}{ }_{i} \geq \frac{1}{2}\right\}\) is a vertex cover whose weight is at most twice the min possible weight

Pf. [S is a vertex cover]
- Consider an edge \((i, j) \in E\).
- Since \(x^{\star}{ }_{i}+x^{\star}{ }_{j} \geq 1\), either \(x^{\star}{ }_{i} \geq \frac{1}{2}\) or \(x^{\star}{ }_{j} \geq \frac{1}{2} \Rightarrow(i, j)\) covered.

Pf. [S has desired cost]
- Let S* be optimal vertex cover. Then
\[
\begin{aligned}
\sum_{i \in S^{*}} w_{i} \geq \sum_{i \in S} w_{i} x_{i}^{*} & \geq \frac{1}{2} \sum_{i \in S} w_{i} \\
\text { LP is a relaxation } & x^{\star}{ }_{i} \geq \frac{1}{2}
\end{aligned}
\]

Theorem. 2-approximation algorithm for weighted vertex cover.

\section*{* 11.7 Load Balancing Reloaded}

Theorem. [Dinur-Safra 2001] If \(P \neq N P\), then no \(\rho\)-approximation for \(\rho\) < 1.3607, even with unit weights.

1
\[
10 \sqrt{5}-21
\]

Open research problem. Close the gap.

Input. Set of \(m\) machines \(M\); set of \(n\) jobs \(J\).
- Job j must run contiguously on an authorized machine in \(M_{j} \subseteq M\).
- Job \(j\) has processing time \(t_{j}\).
- Each machine can process at most one job at a time.

Def. Let \(J(i)\) be the subset of jobs assigned to machine \(i\). The load of machine \(i\) is \(L_{i}=\Sigma_{j \in J(i)} \dagger_{j}\).

Def. The makespan is the maximum load on any machine \(=\max _{i} L_{i}\).

Generalized load balancing. Assign each job to an authorized machine to minimize makespan.

\section*{Generalized Load Balancing: Integer Linear Program and Relaxation}

ILP formulation. \(x_{i j}=\) time machine i spends processing job j .
\[
\begin{array}{rlll}
(I P) \min & L & & \\
\text { s.t. } & \sum_{i} x_{i j} & =t_{j} & \\
\text { for all } j \in J \\
& \sum_{j} x_{i j} & \leq L & \\
\text { for all } i \in M \\
& x_{i j} & \in\left\{0, t_{j}\right\} & \\
\text { for all } j \in J \text { and } i \in M_{j} \\
& x_{i j} & =0 & \\
\text { for all } j \in J \text { and } i \notin M_{j}
\end{array}
\]

LP relaxation.
```

(LP) min L
s.t. }\mp@subsup{\sum}{i}{}\mp@subsup{x}{ij}{}=\mp@subsup{t}{j}{}\quad\mathrm{ for all }j\in
\sum}\mp@subsup{x}{ij}{}\leqL\quad\mathrm{ for all }i\in
\mp@subsup{x}{ij}{}}\geq0\quad\mathrm{ for all }j\inJ\mathrm{ and }i\in\mp@subsup{M}{j}{
xij =0 for all }j\inJ\mathrm{ and }i\not\in\mp@subsup{M}{j}{

```

Lemma 1. Let \(L\) be the optimal value to the \(L P\). Then, the optima makespan \(L^{*} \geq L\).
Pf. LP has fewer constraints than IP formulation.

Lemma 2. The optimal makespan \(L^{*} \geq \max _{j} \dagger_{j}\).
Pf. Some machine must process the most time-consuming job. -

\section*{Generalized Load Balancing: Rounding}

Rounded solution. Find LP solution \(x\) where \(G(x)\) is a forest. Root forest \(G(x)\) at some arbitrary machine node \(r\).
- If job \(j\) is a leaf node, assign \(j\) to its parent machine \(i\).
- If job \(j\) is not a leaf node, assign \(j\) to one of its children.

Lemma 4. Rounded solution only assigns jobs to authorized machines. Pf. If job \(j\) is assigned to machine \(i\), then \(x_{i j}>0\). LP solution can only assign positive value to authorized machines.


Lemma 3. Let \(x\) be solution to LP. Let \(G(x)\) be the graph with an edge from machine \(i\) to job \(j\) if \(x_{i j}>0\). Then \(G(x)\) is acyclic.
\(\uparrow\)

Pf. (deferred)

\(G(x)\) acyclic
can transform \(x\) into another LP solution where \(G(x)\) is acyclic if LP solver doesn't return such an \(x\)

\(G(x)\) cyclic
jobmachine

\section*{Generalized Load Balancing: Analysis}

Lemma 5. If job \(j\) is a leaf node and machine \(i=\operatorname{parent}(j)\), then \(x_{i j}=\dagger_{j}\). Pf. Since i is a leaf, \(\mathrm{x}_{\mathrm{ij}}=0\) for all \(\mathrm{j} \neq\) parent( i ). LP constraint guarantees \(\Sigma_{i} x_{i j}=t_{j}\). \(\quad\) -

Lemma 6. At most one non-leaf job is assigned to a machine.
Pf. The only possible non-leaf job assigned to machine \(i\) is parent(i).jobmachine


\section*{Theorem. Rounded solution is a 2-approximation.}

Pf.
- Let \(J(i)\) be the jobs assigned to machine \(i\).
- By Lemma 6, the load \(L_{i}\) on machine \(i\) has two components:
\[
\begin{aligned}
& \text { - leaf nodes }
\end{aligned}
\]
- Thus, the overall load \(L_{i} \leq 2 L^{*}\). -

\section*{Generalized Load Balancing: Structure of Solution}

Lemma 3. Let \((x, L)\) be solution to LP. Let \(G(x)\) be the graph with an edge from machine \(i\) to job \(j\) if \(x_{i j}>0\). We can find another solution ( \(x^{\prime}\), L) such that \(G\left(x^{\prime}\right)\) is acyclic.

Pf. Let \(C\) be a cycle in \(G(x)\).
- Augment flow along the cycle \(C\). \(\leftarrow\) flow conservation maintained
- At least one edge from \(C\) is removed (and none are added).
- Repeat until \(G\left(x^{\prime}\right)\) is acyclic.


Flow formulation of LP.
```

\sum\mp@subsup{x}{ij}{}=\mp@subsup{t}{j}{}\quad\mathrm{ for all }j\inJ
\sum\mp@subsup{x}{ij}{}\leqL\quad\mathrm{ for all }i\inM
xij }\geq0\quad\mathrm{ for all }j\inJ\mathrm{ and }i\in\mp@subsup{M}{j}{
\mp@subsup{x}{ij}{}}=0\quad\mathrm{ for all }j\inJ\mathrm{ and }i\not\in\mp@subsup{M}{j}{

```


Observation. Solution to feasible flow problem with value \(L\) are in one-to-one correspondence with LP solutions of value \(L\).

\section*{Conclusions}

Running time. The bottleneck operation in our 2-approximation is solving one LP with \(m n+1\) variables.

Remark. Can solve LP using flow techniques on a graph with \(m+n+1\) nodes: given \(L\), find feasible flow if it exists. Binary search to find \(L^{*}\).

Extensions: unrelated parallel machines. [Lenstra-Shmoys-Tardos 1990]
- Job \(j\) takes \(t_{i j}\) time if processed on machine \(i\).
- 2-approximation algorithm via LP rounding.
- No 3/2-approximation algorithm unless \(P=N P\).

\subsection*{11.8 Knapsack Problem}

\section*{Knapsack Problem}

\section*{Knapsack problem.}
- Given n objects and a "knapsack."
- Item i has value \(v_{i}>0\) and weighs \(w_{i}>0\). \(\longleftarrow\) we'll assume \(w_{i} \leq w\)
- Knapsack can carry weight up to W.
- Goal: fill knapsack so as to maximize total value.

Ex: \(\{3,4\}\) has value 40 .
\[
\text { W = } 11
\]
\begin{tabular}{|c|c|c|}
\hline Item & Value & Weight \\
\hline 1 & 1 & 1 \\
\hline 2 & 6 & 2 \\
\hline 3 & 18 & 5 \\
\hline 4 & 22 & 6 \\
\hline 5 & 28 & 7 \\
\hline
\end{tabular}

PTAS. \((1+\varepsilon)\)-approximation algorithm for any constant \(\varepsilon>0\).
- Load balancing. [Hochbaum-Shmoys 1987]
- Euclidean TSP. [Arora 1996]

Consequence. PTAS produces arbitrarily high quality solution, but trades off accuracy for time.

This section. PTAS for knapsack problem via rounding and scaling.

\section*{Knapsack is NP-Complete}

KNAPSACK: Given a finite set \(X\), nonnegative weights \(w_{i}\), nonnegative values \(v_{i}\), a weight limit \(W\), and a target value \(V\), is there a subset \(S \subseteq X\) such that:
\[
\begin{aligned}
& \sum_{i \in S} w_{i} \leq W \\
& \sum_{i \in S} v_{i} \geq V
\end{aligned}
\]

SUBSET-SUM: Given a finite set \(X\), nonnegative values \(u_{i}\), and an integer \(U\), is there a subset \(S \subseteq X\) whose elements sum to exactly \(U\) ?

Claim. SUBSET-SUM \(\leq p\) KNAPSACK.
Pf. Given instance ( \(u_{1}, \ldots, u_{n}, U\) ) of SUBSET-SUM, create KNAPSACK instance:
\[
\begin{array}{ll}
v_{i}=w_{i}=u_{i} & \sum_{i \in S} u_{i} \leq U \\
V=W=U & \sum_{i \in S} u_{i} \geq U
\end{array}
\]

Def. OPT \((i, w)=\max\) value subset of items \(1, \ldots\), , with weight limit \(w\).
- Case 1: OPT does not select item i.
- OPT selects best of \(1, \ldots, i-1\) using up to weight limit \(w\)
- Case 2: OPT selects item i.
- new weight limit = w - wi
- OPT selects best of \(1, \ldots, i-1\) using up to weight limit \(w-w_{i}\)
\(O P T(i, w)= \begin{cases}0 & \text { if } \mathrm{i}=0 \\ O P T(i-1, w) & \text { if } \mathrm{w}_{\mathrm{i}}>\mathrm{w} \\ \max \{O P T(i-1, w), & \left.v_{i}+O P T\left(i-1, w-w_{i}\right)\right\} \\ \text { otherwise }\end{cases}\)

Running time. \(O(n W)\).
- \(W=\) weight limit.
- Not polynomial in input size!

\section*{Knapsack: FPTAS}

Intuition for approximation algorithm.
- Round all values up to lie in smaller range.
- Run dynamic programming algorithm on rounded instance.
- Return optimal items in rounded instance.
\begin{tabular}{|c|c|c|}
\hline Item & Value & Weight \\
\hline 1 & 934,221 & 1 \\
\hline 2 & \(5,956,342\) & 2 \\
\hline 3 & \(17,810,013\) & 5 \\
\hline 4 & \(21,217,800\) & 6 \\
\hline 5 & \(27,343,199\) & 7 \\
\hline
\end{tabular}
\(W=11\)

Def. OPT \((i, v)=\min\) weight subset of items \(1, \ldots, i\) that yields value exactly v .
- Case 1: OPT does not select item i.
- OPT selects best of \(1, \ldots, i-1\) that achieves exactly value \(v\)
- Case 2: OPT selects item i.
- consumes weight \(w_{i}\), new value needed \(=v-v_{i}\)
- OPT selects best of \(1, \ldots, i-1\) that achieves exactly value \(v\)
\(\operatorname{OPT}(i, v)= \begin{cases}0 & \text { if } \mathrm{v}=0 \\ \infty & \text { if } \mathrm{i}=0, \mathrm{v}>0 \\ O P T(i-1, v) & \text { if } \mathrm{v}_{\mathrm{i}}>v \\ \min \left\{O P T(i-1, v), w_{i}+O P T\left(i-1, v-v_{i}\right)\right\} & \text { otherwise }\end{cases}\)

Running time. \(O\left(n V^{\star}\right) \stackrel{\star}{=}=O\left(n^{2} v_{\text {max }}\right)\).
- \(\mathrm{V}^{\star}=\) optimal value \(=\) maximum \(v\) such that \(O P T(n, v) \leq W\).
- Not polynomial in input size!

\section*{Knapsack: FPTAS}

Knapsack FPTAS. Round up all values: \(\quad \bar{v}_{i}=\left\lceil\frac{v_{i}}{\theta}\right\rceil \theta, \quad \hat{v}_{i}=\left\lceil\frac{v_{i}}{\theta}\right\rceil\)
- \(\mathrm{v}_{\text {max }}=\) largest value in original instance
\(-\varepsilon \quad=\) precision parameter
\(-\theta=\) scaling factor \(=\varepsilon \mathrm{V}_{\max } / n\)
Observation. Optimal solution to problems with \(\bar{v}\) or \(\hat{v}\) are equivalent.

Intuition. \(\bar{v}\) close to \(v\) so optimal solution using \(\bar{v}\) is nearly optimal; \(\hat{v}\) small and integral so dynamic programming algorithm is fast.

Running time. \(O\left(n^{3} / \varepsilon\right)\).
- Dynamic program II running time is \(O\left(n^{2} \hat{v}_{\max }\right)\), where
\[
\hat{v}_{\max }=\left\lceil\frac{v_{\max }}{\theta}\right\rceil=\left\lceil\frac{n}{\varepsilon}\right\rceil
\]
original instance
rounded instance

Knapsack FPTAS. Round up all values: \(\quad \bar{v}_{i}=\left[\frac{v_{i}}{\theta}\right] \theta\)

Theorem. If \(S\) is solution found by our algorithm and \(S^{*}\) is any other feasible solution then \((1+\varepsilon) \sum_{i \in S} v_{i} \geq \sum_{i \in S^{*}} v_{i}\)

Pf. Let \(S^{*}\) be any feasible solution satisfying weight constraint.
\begin{tabular}{rlrl}
\(\sum_{i \in S^{*}} v_{i}\) & \(\leq \sum_{i \in S^{*}} \bar{v}_{i}\) & & always round up \\
& \(\leq \sum_{i \in S} \bar{v}_{i}\) & & solve rounded instance optimally \\
& \(\leq \sum_{i \in S}\left(v_{i}+\theta\right)\) & & never round up by more than \(\theta\) \\
& \(\leq \sum_{i \in S} v_{i}+n \theta\) & & \(|S| \leq n\) \\
& \(\leq(1+\varepsilon) \sum_{i \in S} v_{i}\) & & \(n \theta=\varepsilon v_{\max }, v_{\text {max }} \leq \Sigma_{i \in S} v_{i}\)
\end{tabular}

Load Balancing on 2 Machines

Claim. Load balancing is hard even if only 2 machines.
Pf. NUMBER-PARTITIONING \(\leq p\) LOAD-BALANCE.
\(\uparrow\)
NP-complete by Exercise 8.26


\section*{Extra Slides}

\section*{Center Selection: Hardness of Approximation}

Theorem. Unless \(P=N P\), there is no \(\rho\)-approximation algorithm for metric k-center problem for any \(\rho<2\).

Pf. We show how we could use a ( \(2-\varepsilon\) ) approximation algorithm for \(k\) center to solve DOMINATING-SET in poly-time.
- Let \(G=(V, E), k\) be an instance of DOMINATING-SET. ఒ see Exercise 8.29
. Construct instance \(G\) ' of \(k\)-center with sites \(V\) and distances
\(-d(u, v)=2\) if \((u, v) \in E\)
\(-d(u, v)=1\) if \((u, v) \notin E\)
- Note that \(G^{\prime}\) satisfies the triangle inequality.
- Claim: \(G\) has dominating set of size \(k\) iff there exists \(k\) centers \(C^{\star}\) with \(r\left(C^{\star}\right)=1\).
- Thus, if \(G\) has a dominating set of size \(k, a(2-\varepsilon)\)-approximation algorithm on \(G^{\prime}\) must find a solution \(C^{\star}\) with \(r\left(C^{\star}\right)=1\) since it cannot use any edge of distance 2 .```

