

Geography. Alice names capital city c of country she is in. Bob names a capital city c ' that starts with the letter on which c ends. Alice and Bob repeat this game until one player is unable to continue. Does Alice have a forced win?

Ex. Budapest \rightarrow Tokyo \rightarrow Ottawa \rightarrow Ankara \rightarrow Amsterdam \rightarrow Moscow
\rightarrow Washington \rightarrow Nairobi \rightarrow...

Geography on graphs. Given a directed graph $G=(V, E)$ and a start node s, two players alternate turns by following, if possible, an edge out of the current node to an unvisited node. Can first player guarantee to make the last legal move?

Remark. Some problems (especially involving 2-player games and AI) defy classification according to P, EXPTIME, NP, and NP-complete.

PSPACE

9.1 PSPACE

P. Decision problems solvable in polynomial time.

PSPACE. Decision problems solvable in polynomial space.

[^0]Binary counter. Count from 0 to $2^{n}-1$ in binary.
Algorithm. Use n bit odometer.

Claim. 3-SAT is in PSPACE
Pf.

- Enumerate all 2^{n} possible truth assignments using counter.
- Check each assignment to see if it satisfies all clauses. *

Theorem. NP \subseteq PSPACE.
Pf. Consider arbitrary problem Y in NP

- Since $Y \leq p 3-S A T$, there exists algorithm that solves Y in poly-time plus polynomial number of calls to 3-SAT black box.
- Can implement black box in poly-space. .

Quantified Satisfiability

QSAT. Let $\Phi\left(x_{1}, \ldots, x_{n}\right)$ be a Boolean CNF formula. Is the following propositional formula true?

$$
\exists x_{1} \forall x_{2} \exists x_{3} \forall x_{4} \ldots \forall x_{n-1} \exists x_{n} \Phi\left(x_{1}, \ldots, x_{n}\right)
$$

Intuition. Amy picks truth value for x_{1}, then Bob for x_{2}, then Amy for x_{3}, and so on. Can Amy satisfy Φ no matter what Bob does?

Ex. $\quad\left(x_{1} \vee x_{2}\right) \wedge\left(x_{2} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee x_{3}\right)$
Yes. Amy sets x_{1} true; Bob sets x_{2}; Amy sets x_{3} to be same as x_{2}.
Ex. $\quad\left(x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee x_{3}\right)$
No. If Amy sets x_{1} false; Bob sets x_{2} false; Amy loses; if Amy sets x_{1} true; Bob sets x_{2} true; Amy loses.

9.3 Quantified Satisfiability

QSAT is in PSPACE

Theorem. QSAT \in PSPACE.
Pf. Recursively try all possibilities.

- Only need one bit of information from each subproblem.
- Amount of space is proportional to depth of function call stack.

9.4 Planning Problem

Planning Problem

Conditions. Set $C=\left\{C_{1}, \ldots, C_{n}\right\}$.
Initial configuration. Subset $c_{0} \subseteq C$ of conditions initially satisfied. Goal configuration. Subset $c^{\star} \subseteq C$ of conditions we seek to satisfy. Operators. Set $O=\left\{O_{1}, \ldots, O_{k}\right\}$.

- To invoke operator O_{i}, must satisfy certain prereq conditions.
- After invoking O_{i} certain conditions become true, and certain conditions become false.

PLANNING. Is it possible to apply sequence of operators to get from initial configuration to goal configuration?

Examples.

- 15-puzzle.
- Rubik's cube.
- Logistical operations to move people, equipment, and materials.

8-puzzle, 15-puzzle. [Sam Loyd 1870s]

- Board: 3-by-3 grid of tiles labeled 1-8.
- Legal move: slide neighboring tile into blank (white) square.
- Find sequence of legal moves to transform initial configuration into goal configuration.

$$
\begin{array}{|l|l|l|}
\hline 1 & 2 & 3 \\
\hline 4 & 5 & 6 \\
\hline 8 & 7 & \\
\hline
\end{array} \xrightarrow{\text { move } 12} \boldsymbol{| l | l | l |} \begin{array}{|l|l|l|l|l|l|}
\hline 1 & 2 & 3 \\
\hline 4 & 5 & \\
\hline 8 & 7 & 6 \\
\hline 1 & 2 & 3 \\
\hline 4 & 5 & 6 \\
\hline 7 & 8 & \\
\hline
\end{array}
$$

initial configuration

Planning Problem: 8-Puzzle

Planning example. Can we solve the 8 -puzzle?
Conditions. $C_{i \mathrm{ij}}, 1 \leq \mathrm{i}, \mathrm{j} \leq 9 . \leftarrow c_{\mathrm{ij}}$ means tile i is in square j
Initial state. $C_{0}=\left\{C_{11}, C_{22}, \ldots, C_{66}, C_{78}, C_{87}, C_{99}\right\}$.
Goal state. $\quad c^{\star}=\left\{C_{11}, C_{22}, \ldots, C_{66}, C_{77}, C_{88}, C_{99}\right\}$.

Operators.
. Precondition to apply $O_{i}=\left\{C_{11}, C_{22}, \ldots, C_{66}, C_{78}, C_{87}, C_{99}\right\}$.

- After invoking O_{i}, conditions C_{79} and C_{97} become true.
- After invoking O_{i}, conditions C_{78} and C_{99} become false.

1	2	3
4	5	6
8	9	7

Solution. No solution to 8-puzzle or 15-puzzle!

8-puzzle invariant. Any legal move preserves the parity of the number of pairs of pieces in reverse order (inversions).

Planning example. Can we increment an n-bit counter from the allzeroes state to the all-ones state?

```
Conditions. \(C_{1}, \ldots, C_{n}\).
\(\leftarrow c_{\mathrm{i}}\) corresponds to bit \(\mathrm{i}=1\)
Initial state. \(c_{0}=\phi\).
\(\leftarrow\) all 0 s
Goal state. \(c^{\star}=\left\{C_{1}, \ldots, C_{n}\right\}\).
\(\leftarrow\) all 1s
Operators. \(O_{1}, \ldots, O_{n}\).
```

- To invoke operator O_{i}, must satisfy C_{1}, \ldots, C_{i-1}.
$\leftarrow i-1$ least significant bits are 1
- After invoking O_{i}, condition C_{i} becomes true. \leftarrow set bit i to 1
- After invoking O_{i}, conditions C_{1}, \ldots, C_{i-1} become false. $\leftarrow \underset{\substack{\text { set }+i-1 \text { least significant } \\ \text { bits to } 0}}{\substack{ \\\text { - }}}$

Solution. $\left\} \Rightarrow\left\{C_{1}\right\} \Rightarrow\left\{C_{2}\right\} \Rightarrow\left\{C_{1}, C_{2}\right\} \Rightarrow\left\{C_{3}\right\} \Rightarrow\left\{C_{3}, C_{1}\right\} \Rightarrow \ldots\right.$

Observation. Any solution requires at least $2^{n}-1$ steps.

Planning Problem: In Polynomial Space

Theorem. PLANNING is in PSPACE.

Pf.

- Suppose there is a path from c_{1} to c_{2} of length L.
- Path from c_{1} to midpoint and from c_{2} to midpoint are each $\leq L / 2$.
- Enumerate all possible midpoints.
- Apply recursively. Depth of recursion $=\log _{2}$ L. -

```
boolean hasPath(ci, ci, L) {
    if (L \leq 1) return correct answer
        enumerate using binary counter
    foreach configuration c' {
        boolean x = hasPath(c, c', L/2)
        boolean }\textrm{y}=\mathrm{ hasPath( }\mp@subsup{c}{2}{},\mp@subsup{c}{'}{\prime},\textrm{L}/2
        if (x and y) return true
    }
    return false
```

\}

9.5 PSPACE-Complete

PSPACE-Complete Problems

More PSPACE-complete problems

- Competitive facility location.
- Natural generalizations of games.
- Othello, Hex, Geography, Rush-Hour, Instant Insanity
- Shanghai, go-moku, Sokoban
- Given a memory restricted Turing machine, does it terminate in at most k steps?
- Do two regular expressions describe different languages?
- Is it possible to move and rotate complicated object with attachments through an irregularly shaped corridor?
- Is a deadlock state possible within a system of communicating processors?

PSPACE. Decision problems solvable in polynomial space.
PSPACE-Complete. Problem Y is PSPACE-complete if (i) Y is in PSPACE and (ii) for every problem X in PSPACE, $X \leq p Y$.

Theorem. [Stockmeyer-Meyer 1973] QSAT is PSPACE-complete.

Theorem. PSPACE \subseteq EXPTIME.
Pf. Previous algorithm solves QSAT in exponential time, and QSAT is PSPACE-complete. -

```
Summary. P\subseteqNP\subseteqPSPACE\subseteq EXPTIME.
    it is known that P\not= EXPTIME, but unknown which inclusion is strict:
    conjectured that all are
```


Competitive Facility Location

Input. Graph with positive edge weights, and target B.
Game. Two competing players alternate in selecting nodes. Not allowed to select a node if any of its neighbors has been selected.

Competitive facility location. Can second player guarantee at least B units of profit?

Yes if $B=20$; no if $B=25$.

Claim. COMPETITIVE-FACILITY is PSPACE-complete.
Pf.

- To solve in poly-space, use recursion like QSAT, but at each step there are up to n choices instead of 2 .
- To show that it's complete, we show that QSAT polynomial reduces to it. Given an instance of QSAT, we construct an instance of COMPETITIVE-FACILITY such that player 2 can force a win iff QSAT formula is true.

Competitive Facility Location

Construction. Given instance $\Phi\left(x_{1}, \ldots, x_{n}\right)=C_{1} \wedge C_{1} \wedge \ldots C_{\mathrm{k}}$ of QSAT.

- Give player 2 one last move on which she can try to win.
- For each clause C_{j}, add node with value 1 and an edge to each of its literals.
- Player 2 can make last move iff truth assignment defined alternately by the players failed to satisfy some clause. -

Construction. Given instance $\Phi\left(x_{1}, \ldots, x_{n}\right)=C_{1} \wedge C_{1} \wedge \ldots C_{\mathrm{k}}$ of QSAT.

- Include a node for each literal and its negation and connect them. - at most one of x_{i} and its negation can be chosen
- Choose $c \geq k+2$, and put weight c^{i} on literal x^{i} and its negation; set $B=c^{n-1}+c^{n-3}+\ldots+c^{4}+c^{2}+1$.
- ensures variables are selected in order $x_{n}, x_{n-1}, \ldots, x_{1}$.
- As is, player 2 will lose by 1 unit: $c^{n-1}+c^{n-3}+\ldots+c^{4}+c^{2}$.

[^0]: Observation. $\mathrm{P} \subseteq$ PSPACE.
 poly-time algorithm can consume only polynomial space

