

Algorithm design patterns.

- Greedy.
- Divide-and-conquer.
- Dynamic programming.
- Duality.
- Reductions.
- Local search.
- Randomization.

Algorithm design anti-patterns.

- NP-completeness.
- PSPACE-completeness.
- Undecidability.

Ex.
$O(n \log n)$ interval scheduling
$O(n \log n)$ FFT.
$O\left(n^{2}\right)$ edit distance.
$O\left(n^{3}\right)$ bipartite matching.
$O\left(n^{k}\right)$ algorithm unlikely.
$O\left(n^{k}\right)$ certification algorithm unlikely. No algorithm possible.

Classify Problems According to Computational Requirements
Q. Which problems will we be able to solve in practice?

A working definition. [von Neumann 1953, Godel 1956, Cobham 1964, Edmonds 1965, Rabin 1966] Those with polynomial-time algorithms.

Yes	Probably no
Shortest path	Longest path
Matching	3D-matching
Min cut	Max cut
2-SAT	3-SAT
Planar 4-color	Planar 3-color
Bipartite vertex cover	Vertex cover
Primality testing	Factoring

Desiderata. Classify problems according to those that can be solved in polynomial-time and those that cannot.

Provably requires exponential-time.

- Given a Turing machine, does it halt in at most k steps?
- Given a board position in an n-by-n generalization of chess, can black guarantee a win?

Frustrating news. Huge number of fundamental problems have defied classification for decades.

This chapter. Show that these fundamental problems are "computationally equivalent" and appear to be different manifestations of one really hard problem.

Polynomial-Time Reduction

Purpose. Classify problems according to relative difficulty.

Design algorithms. If $X \leq p Y$ and Y can be solved in polynomial-time, then X can also be solved in polynomial time.

Establish intractability. If $X \leq_{p} Y$ and X cannot be solved in polynomial-time, then Y cannot be solved in polynomial time.

Establish equivalence. If $X s_{p} Y$ and $Y \leqslant_{p} X$, we use notation $X \equiv_{p} Y$.

[^0]Desiderata'. Suppose we could solve X in polynomial-time. What else could we solve in polynomial time?

Reduction. Problem X polynomial reduces to problem Y if arbitrary instances of problem X can be solved using:

- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem Y.
\square
Notation. $X \leq_{p} \mathrm{Y}$. computational model supplemented by special piece computational model supplemented by special piece
of hardware that solves instances of y in a single step

Remarks.

- We pay for time to write down instances sent to black box \Rightarrow instances of Y must be of polynomial size.
- Note: Cook reducibility.

Reduction By Simple Equivalence

Basic reduction strategies.

- Reduction by simple equivalence.
- Reduction from special case to general case.
- Reduction by encoding with gadgets.

INDEPENDENT SET: Given a graph $G=(V, E)$ and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \geq k$, and for each edge at most one of its endpoints is in S?

Ex. Is there an independent set of size ≥ 6 ? Yes.
Ex. Is there an independent set of size ≥ 7 ? No.

\bigcirc independent set

Vertex Cover and Independent Set

Claim. VERTEX-COVER \equiv_{p} INDEPENDENT-SET.
Pf. We show S is an independent set iff $V-S$ is a vertex cover.

VERTEX COVER: Given a graph $G=(V, E)$ and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \leq k$, and for each edge, at least one of its endpoints is in S?

Ex. Is there a vertex cover of size ≤ 4 ? Yes.
Ex. Is there a vertex cover of size ≤ 3 ? No.

vertex cover

Vertex Cover and Independent Set

Claim. VERTEX-COVER \equiv_{p} INDEPENDENT-SET.
Pf. We show S is an independent set iff $V-S$ is a vertex cover.
\Rightarrow

- Let S be any independent set.
- Consider an arbitrary edge (u, v).
- S independent $\Rightarrow u \notin S$ or $v \notin S \Rightarrow u \in V-S$ or $v \in V-S$.
- Thus, V-S covers (u, v).
\Leftarrow
- Let $V-S$ be any vertex cover.
- Consider two nodes $u \in S$ and $v \in S$.
- Observe that $(u, v) \notin E$ since $V-S$ is a vertex cover.
- Thus, no two nodes in S are joined by an edge \Rightarrow S independent set. "

Reduction from Special Case to General Case

Basic reduction strategies.

- Reduction by simple equivalence.
- Reduction from special case to general case.
- Reduction by encoding with gadgets.

Vertex Cover Reduces to Set Cover

Claim. VERTEX-COVER $\leq \rho$ SET-COVER.
Pf. Given a VERTEX-COVER instance $G=(V, E)$, k, we construct a se \dagger cover instance whose size equals the size of the vertex cover instance.

Construction.

- Create SET-COVER instance:

$$
-k=k, U=E, S_{v}=\{e \in E: e \text { incident to } v\}
$$

- Set-cover of size $\leq k$ iff vertex cover of size $\leq k$. -

SET COVER: Given a set U of elements, a collection $S_{1}, S_{2}, \ldots, S_{m}$ of subsets of U, and an integer k, does there exist a collection of $\leq k$ of these sets whose union is equal to U ?

Sample application.

- m available pieces of software.
- Set U of n capabilities that we would like our system to have.
- The ith piece of software provides the set $S_{i} \subseteq \cup$ of capabilities.
- Goal: achieve all n capabilities using fewest pieces of software.

Ex:

$$
\begin{array}{ll}
U=\{1,2,3,4,5,6,7\} \\
\mathrm{k}=2 & \\
S_{1}=\{3,7\} & S_{4}=\{2,4\} \\
S_{2}=\{3,4,5,6\} & S_{5}=\{5\} \\
S_{3}=\{1\} & S_{6}=\{1,2,6,7\}
\end{array}
$$

Polynomial-Time Reduction

Basic strategies.

- Reduction by simple equivalence.
- Reduction from special case to general case.
- Reduction by encoding with gadgets.

8.2 Reductions via "Gadgets"

Basic reduction strategies.

- Reduction by simple equivalence.
- Reduction from special case to general case.
- Reduction via "gadgets."

3 Satisfiability Reduces to Independent Set

Claim. $3-$ SAT $\leq p$ INDEPENDENT-SET.
Pf. Given an instance Φ of 3-SAT, we construct an instance (G, k) of INDEPENDENT-SET that has an independent set of size k iff Φ is satisfiable.

Construction.

- G contains 3 vertices for each clause, one for each literal.
- Connect 3 literals in a clause in a triangle.
- Connect literal to each of its negations.
G

$$
\Phi=\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{4}\right)
$$

Abstract

Literal: A Boolean variable or its negation. x_{i} or $\overline{x_{i}}$

Clause: A disjunction of literals. $C_{j}=x_{1} \vee \overline{x_{2}} \vee x_{3}$

Conjunctive normal form: A propositional $\Phi=C_{1} \wedge C_{2} \wedge C_{3} \wedge C_{4}$ formula Φ that is the conjunction of clauses.

SAT: Given CNF formula Φ, does it have a satisfying truth assignment? 3-SAT: SAT where each clause contains exactly 3 literals. each corresponds to a different variable $$
\begin{aligned} & \text { Ex: }\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\begin{array}{lll} x_{2} & x_{3} \end{array}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}}\right) \\ & \text { Yes: } \mathrm{x}_{1}=\text { true }, \mathrm{x}_{2}=\text { true } \mathrm{x}_{3}=\text { false. } \end{aligned}
$$

3 Satisfiability Reduces to Independent Set

Claim. G contains independent set of size $k=|\Phi|$ iff Φ is satisfiable.
Pf. \Rightarrow Let S be independent set of size k.

- S must contain exactly one vertex in each triangle.
- Set these literals to true. \leftarrow and any other variables in a consistent way
- Truth assignment is consistent and all clauses are satisfied.

Pf \Leftarrow Given satisfying assignment, select one true literal from each triangle. This is an independent set of size k. -
G

Basic reduction strategies.

- Simple equivalence: INDEPENDENT-SET \equiv_{p} VERTEX-COVER.
- Special case to general case: VERTEX-COVER $\leq p$ SET-COVER.
- Encoding with gadgets: $3-$ SAT \leq_{p} INDEPENDENT-SET.

Transitivity. If $X s_{p} Y$ and $Y s_{p} Z$, then $X s_{p} Z$.
Pf idea. Compose the two algorithms.

Ex: $3-$ SAT \leq_{p} INDEPENDENT-SET \leq_{p} VERTEX-COVER \leq_{p} SET-COVER.

Decision problem. Does there exist a vertex cover of size $\leq k$? search problem. Find vertex cover of minimum cardinality.

Self-reducibility. Search problem $\leq p$ decision version.

- Applies to all (NP-complete) problems in this chapter.
- Justifies our focus on decision problems.

Ex: to find min cardinality vertex cover.

- (Binary) search for cardinality k^{*} of min vertex cover.
- Find a vertex v such that $G-\{v\}$ has a vertex cover of size $\leq k^{*}-1$. - any vertex in any min vertex cover will have this property
- Include vin the vertex cover.
- Recursively find a min vertex cover in $G-\{v\}$.
delete vand all incident edges

[^0]: 1
 up to cost of reduction

