Chapter 7
Network Flow

Ngumhm Jesinn

JON KLEINBERG - EVA TARDOS

PEARSON| Slides by Kevin Wayne.
RN

A% All rights reserved.

Maximum Flow and Minimum Cut

Max flow and min cut.
= Two very rich algorithmic problems.
= Cornerstone problems in combinatorial optimization.
« Beautiful mathematical duality.

Nontrivial applications / reductions.

« Data mining. = Network reliability.

= Open-pit mining. = Distributed computing.

« Project selection. « Egalitarian stable matching.

= Airline scheduling. = Security of statistical data.

= Bipartite matching. = Network intrusion detection.

=« Baseball elimination. = Multi-camera scene reconstruction.
= Image segmentation. = Many many more ...

« Network connectivity.

Copyright © 2005 Pearson-Addison Wesley.

Soviet Rail Network, 1955

. L Jo ity |
T LA Ron e

Reference: On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.

Minimum Cut Problem

Flow network.
« Abstraction for material flowing through the edges.
« 6= (V, E)=directed graph, no parallel edges.
» Two distinguished nodes: s = source, t = sink.
« c(e) = capacity of edge e.

4 10
source 5 ﬁ(?k 8 10 sink
4 6 15 10

15
capacity —7
30

Cuts Cuts

Def. Ans-t cut is a partition (A, B) of Vwiths € Aand ¥+ € B. Def. Ans-t cut is a partition (A, B) of Vwiths € Aand + € B.

S cle) Def. The capacity of a cut (A, B)is: cap(4,B) = 3 c(e)

eoutof 4

Def. The capacity of a cut (A, B)is: cap(4,B) =

eoutof 4

8 ® 10 ® — =0 10 ®

15 A 4 T 6 15 10

15 é 10 15 -
Capacity =10+ 5+ 15 g Capacity = 9 +15 + 8 + 30
4 30 @ =30 4 30 ;@ = 62

Minimum Cut Problem Flows

Min s-t cut problem. Find an s-t cut of minimum capacity. Def. Ans-t flow is a function that satisfies:

« Foreache€E: 0 = f(e) = cle) [capacity]
« ForeachveV-{s,t}: 3Sf(e) = 3 f(e) [conservation]
eintov eout of v

Def. The value of a flow fis: v(f) = 3 f(e) .

eoutof s

° ® @ 9 ®

A
10]
0 4 4
5 3 8 »(6) 10 ® 5 ® 8 (® 10 ®
T /D 0 0
A = 4 6 15 4 0 6 15 0 10

10 capacity — 15

. flow — 0
Capacity = 10 + 8 + 10 0 Value = 4
=28

® 0 ®

30

Flows Maximum Flow Problem

Def. Ans-t flow is a function that satisfies: Max flow problem. Find s-t flow of maximum value.
. Foreache€E: 0 = f(e) = cle) [capacity]
« ForeachveV-{s,t}: 3fe) = 3Sf(e) [conservation]
eintov eoutof v
Def. The value of aflow fis: v(f) = 3 f(e) .
eoutof s
6 9
10 0 6 10 1 9
10 4 4 15 15 0 10 10 40 15 5 0 10
3 8 8 4 9
® 5 ® 8 ® 10 ® ® 5 ® 8 ® 10 ®
1 10 4 10
40 15 0 0 15 0
capacity — 15 é 10 capacity — 15 I é 10
flow — 11 1 flow — 14 14
Value = 24 Value = 28

Flows and Cuts Flows and Cuts
Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut.
Then, the net flow sent across the cut is equal to the amount leaving s. Then, the net flow sent across the cut is equal to the amount leaving s.
Sfle) = Yfle) = v(f) Sfle) = Xfle) = v(f)
eout of A einto A e out of A einto A
6 6
D ® 2 o >®
10 0 6 10 0 6
10 4 4 15 15 0 10 10 44 15 15 0 10
3 8 8 3 8\ ’
s —>®) : ® © @ 5 G : P9 o @
A 1 10 A ! 10
4 0 6 15 0 10 4 0 6 15 0 10

1 1
> Value = 24 1 Value=6+0+8-1+11
< 30 @ 4 30 »7 =24

Flows and Cuts
Flow value lemma. Let f be any flow, and let (A, B) be any s- cut.
Then, the net flow sent across the cut is equal to the amount leaving s.

2fle) = Xfle) = wf)

eoutof A einto A

6

10 0 6
10 3 15 15 0 10
3 8 8
3 8 »(6) 10

W
~._ ! 10
40 6 15 0 10

15 .
S
11 .
1 N Value=10-4+8-0+10
30 =24

Flows and Cuts

Weak duality. Let f be any flow, and let (A, B) be any s-t cut. Then the
value of the flow is at most the capacity of the cut.

Cut capacity =30 = Flow value < 30

/@) ? ®
4

—Q®
4

15 15 10

C ity = 30
\G) . @ apacity

Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then

2 fle- 3 fle)= v(f).

eoutof 4 einto A

Pf. W) = 3 fl
eoutof s
by flow conservation, all terms — = Y (> fley- 3 f(e))
exceptv=sare0 vEA \eoutof v eintov

2 fle) - 3 flo).

eout of A einto A

Flows and Cuts

Weak duality. Let f be any flow. Then, for any s-t cut (A, B) we have
v(f) = cap(A, B).

Pf.

v(f) 2 flo- X fle)

eoutof A einto A

> fle)

eoutof A

2 cle)

e out of A

= cap(A,B) =

A

A

Certificate of Optimality Towards a Max Flow Algorithm

Corollary. Let f be any flow, and let (A, B) be any cut. Greedy algorithm.
If v(f) = cap(A, B), then f is a max flow and (A, B) is a min cut. « Start with f(e) = O for all edge e € E.
. Find an s-t path P where each edge has f(e) < c(e).
Value of flow = 28 « Augment flow along path P.

Cut capacity =28 = Flow value < 28 « Repeat until you get stuck.

9 1
2 o ®
0 0
10 . 9

15 20 10

4
15 g ~_ 10 10 20
Flow value = O
14 " \\\ 0 v 0
30 2

Towards a Max Flow Algorithm Towards a Max Flow Algorithm
Greedy algorithm. Greedy algorithm.
» Start with f(e) = 0 for all edge e € E. . Start with f(e) = 0 for all edge e € E.
« Find an s-t path P where each edge has f(e) < c(e). « Find an s-t path P where each edge has f(e) < c(e).
« Augment flow along path P. « Augment flow along path P.
« Repeat until you get stuck. « Repeat until you get stuck.
N locally optimality > global optimality
1
20 X 0
20 10 20 0 20 10
20 10 20 10
30 K20 30 20 30 10
10 20 10 20 10 20
0 v X 20 Flow value = 20 0 20 10 20

2 greedy = 20 opt = 30

Residual Graph

Original edge: e = (u,v) €E. capacity

Flow f(e), capacity c(e) <
- ! ’ (: ———— 17— :)
6
N

flow

Residual edge.
« "Undo" flow sent.
« e=(u,v)and eR = (v, u).
« Residual capacity:

(© = cle)-f(e) if eEE
2 e if fEE

residual capacity
r’d
(:)< 11 —j:)
6
™ residual capacity
Residual graph: G; = (V, E;).

» Residual edges with positive residual capacity.
« Ef={e:f(e)<c(e)} U {eR:f(e)>0}

Augmenting Path Algorithm

Augment (£, c, P) {
b < bottleneck (P)
foreach e € P {

if (e EE) f(e) « f(e) + b forward edge
else f(eR)«— f(ef) - b reverse edge
}
return £

Ford-Fulkerson(G, s, t, c) {
foreach e EE f(e) <« 0
G; < residual graph

while (there exists augmenting path P) {
f < Augment(f, c, P)
update G

}

return £

21

23

Ford-Fulkerson Algorithm

»(4
?\ capacity
e

Max-Flow Min-Cut Theorem

Augmenting path theorem. Flow f is a max flow iff there are no
augmenting paths.

Max-flow min-cut theorem. [Elias-Feinstein-Shannon 1956, Ford-Fulkerson 1956]
The value of the max flow is equal to the value of the min cut.

Pf. We prove both simultaneously by showing TFAE:
(i) There exists a cut (A, B) such that v(f) = cap(A, B).
(i) Flow f is a max flow.
(iii) There is no augmenting path relative to f.

(i) = (ii) This was the corollary to weak duality lemma.
(if) = (iii) We show contrapositive.

. Let f be a flow. If there exists an augmenting path, then we can
improve f by sending flow along path.

Proof of Max-Flow Min-Cut Theorem

(i) = (i)

Let f be a flow with no augmenting paths.

Let A be set of vertices reachable from s in residual graph.
By definition of A, s € A.

By definition of f, + & A.

v(f)

2 fle- T f(e)

e out of A einto A

> c(e)

eoutof A

cap(A,B) =

original network

25

7.3 Choosing Good Augmenting Paths

Running Time

Assumption. All capacities are integers between 1 and C.

Invariant. Every flow value f(e) and every residual capacity ¢ (e)
remains an integer throughout the algorithm.

Theorem. The algorithm terminates in at most v(f*) < nC iterations.
Pf. Each augmentation increase value by at least 1. =

Corollary. If C =1, Ford-Fulkerson runs in O(mn) time.
Integrality theorem. If all capacities are integers, then there exists a

max flow f for which every flow value f(e) is an integer.
Pf. Since algorithm terminates, theorem follows from invariant. =

Ford-Fulkerson: Exponential Number of Augmentations

Q. Is generic Ford-Fulkerson algorithm polynomial in input size?

m, n, and log C

A. No. If max capacity is C, then algorithm can take C iterations.

1 1
1 X 0 1 X X1
c c c c
1 X1 1 XXO0
c c ¢
0 4 X1 1 X v 1

Choosing Good Augmenting Paths

Use care when selecting augmenting paths.
« Some choices lead to exponential algorithms.
« Clever choices lead to polynomial algorithms.
« If capacities are irrational, algorithm not guaranteed to terminate!

Goal: choose augmenting paths so that:
« Can find augmenting paths efficiently.
« Few iterations.

Choose augmenting paths with: [Edmonds-Karp 1972, Dinitz 1970]
» Max bottleneck capacity.
« Sufficiently large bottleneck capacity.
« Fewest number of edges.

Capacity Scaling

Scaling-Max-Flow(G, s, t, c) {
foreach e € E f(e) <« 0
A < smallest power of 2 greater than or equal to C
G; < residual graph

while (A = 1) {
G¢(A) < A-residual graph
while (there exists augmenting path P in G:(A)) {
f < augment(f, c, P)
update G;(A)
}
A< A/ 2
}

return £

29

31

Capacity Scaling

Intuition. Choosing path with highest bottleneck capacity increases
flow by max possible amount.

. Don't worry about finding exact highest bottleneck path.

» Maintain scaling parameter A.

« Let 6¢(A) be the subgraph of the residual graph consisting of only

arcs with capacity at least A.

110 102 110 102
< 1
122\£/170 122 170
6; 6, (100)

Capacity Scaling: Correctness

Assumption. All edge capacities are integers between 1 and C.
Integrality invariant. All flow and residual capacity values are integral.

Correctness. If the algorithm terminates, then f is a max flow.
Pf.
« By integrality invariant, when A =1 = G4(A) = G,.
» Upon termination of A = 1 phase, there are no augmenting paths. =

Capacity Scaling: Running Time

Lemma 1. The outer while loop repeats 1 +[log, C] times.
Pf. Initially C < A< 2C. A decreases by a factor of 2 each iteration. =

Lemma 2. Let f be the flow at the end of a A-scaling phase. Then the
value of the maximum flow is at most v(f) + m A. <« proof on next slide

Lemma 3. There are at most 2m augmentations per scaling phase.
« Let f be the flow at the end of the previous scaling phase.
» L2 = v(f*) < v(f)+m(24).
« Each augmentation in a A-phase increases v(f) by at least A. =

Theorem. The scaling max-flow algorithm finds a max flow in O(m log C)
augmentations. It can be implemented to runin O(m? log C) time. =

33

Capacity Scaling: Running Time

Lemma 2. Let f be the flow at the end of a A-scaling phase. Then value
of the maximum flow is at most v(f) + m A.
Pf. (almost identical to proof of max-flow min-cut theorem)

. We show that at the end of a A-phase, there exists a cut (A, B)

such that cap(A, B) = v(f) + m A.

« Choose A to be the set of nodes reachable from s in G4(A).

« By definition of A,s € A.

«» By definition of f, t & A.

) = X flo- 3 fle)
eoutof A einto A
> > (cle)-A) - > A
eoutof A einto A
= Ycdo- T A- FTA
eoutof A eout of A einto A

v

cap(A,B) - mA .

original network

