
1

Chapter 7

Network Flow

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

* 7.13 Assignment Problem

3

Assignment Problem

Assignment problem.
 Input: weighted, complete bipartite graph G = (L ∪ R, E)

with |L| = |R|.
 Goal: find a perfect matching of min weight.

1

2

3

4

5

1' 2' 3' 4' 5'

Min cost perfect matching

M = { 1-2', 2-3', 3-5', 4-1', 5-4' }

cost(M) = 8 + 7 + 10 + 8 + 11 = 44

3 8 9 15 10

4 10 7 16 14

9 13 11 19 10

8 13 12 20 13

1 7 5 11 9

4

Applications

Natural applications.
 Match jobs to machines.
 Match personnel to tasks.
 Match PU students to writing seminars.

Non-obvious applications.
 Vehicle routing.
 Signal processing.
 Virtual output queueing.
 Multiple object tracking.
 Approximate string matching.
 Enhance accuracy of solving linear systems of equations.

5

Bipartite matching. Can solve via reduction to max flow.

Flow. During Ford-Fulkerson, all capacities and flows are 0/1. Flow
corresponds to edges in a matching M.

Residual graph GM simplifies to:
 If (x, y) ∉ M, then (x, y) is in GM.
 If (x, y) ∈ M, the (y, x) is in GM.

Augmenting path simplifies to:
 Edge from s to an unmatched node x ∈ X.
 Alternating sequence of unmatched and matched edges.
 Edge from unmatched node y ∈ Y to t.

Bipartite Matching

s t

1 1

1

YX

6

Alternating path. Alternating sequence of unmatched and matched
edges, from unmatched node x ∈ X to unmatched node y ∈ Y.

Alternating Path

x

y

matching M

x

y

alternating path

x

y

matching M'

7

Cost of an alternating path. Pay c(x, y) to match x-y; receive c(x, y) to
unmatch x-y.

Shortest alternating path. Alternating path from any unmatched node
x ∈ X to any unmatched node y ∈ Y with smallest cost.

Successive shortest path algorithm.
 Start with empty matching.
 Repeatedly augment along a shortest alternating path.

Assignment Problem: Successive Shortest Path Algorithm

1

2

1'

2'

10

6

7

2

cost(2 - 1') = 7
cost(2 - 2'- 1 - 1') = 2 - 6 + 10 = 6

8

Shortest alternating path. Corresponds to shortest s-t path in GM.

Concern. Edge costs can be negative.

Fact. If always choose shortest alternating path, then GM contains no
negative cycles ⇒ compute using Bellman-Ford.

Our plan. Use duality to avoid negative edge costs (and negative cost
cycles) ⇒ compute using Dijkstra.

Finding The Shortest Alternating Path

1

2

1'

2'

10

-6

7

2

s t
0

0

9

Duality intuition. Adding (or subtracting) a constant to every entry in
row x or column y does not change the min cost perfect matching(s).

Equivalent Assignment Problem

3 8 9 15 10

4 10 7 16 14

9 13 11 19 10

8 13 12 20 13

1 7 5 11 9

3 8 9 4 10

4 10 7 2 14

9 13 11 8 10

8 13 12 9 13

1 7 5 0 9

subtract 11 from
column 4

11

c(x, y) cp(x, y)

10

Duality intuition. Adding p(x) to row x and subtracting p(y) from row y
does not change the min cost perfect matching(s).

Equivalent Assignment Problem

c(x, y)

0 0 3 1 2

0 1 0 1 5

4 3 3 3 0

0 0 1 1 0

1 2 2 0 4

cp(x, y)

3 8 9 15 10

4 10 7 16 14

9 13 11 19 10

8 13 12 20 13

1 7 5 11 9

8 13 11 19 13

5

4

3

0

8

9 + 8 - 13

11

Reduced costs. For x ∈ X, y ∈ Y, define cp(x, y) = p(x) + c(x, y) - p(y).

Observation 1. Finding a min cost perfect matching with reduced costs
is equivalent to finding a min cost perfect matching with original costs.

Reduced Costs

c(x, y)

0 0 3 1 2

0 1 0 1 5

4 3 3 3 0

0 0 1 1 0

1 2 2 0 4

cp(x, y)

3 8 9 15 10

4 10 7 16 14

9 13 11 19 10

8 13 12 20 13

1 7 5 11 9

8 13 11 19 13

5

4

3

0

8

9 + 8 - 13

12

Compatible prices. For each node v, maintain prices p(v) such that:
 (i) cp(x, y) ≥ 0 for for all (x, y) ∉ M.
 (ii) cp(x, y) = 0 for for all (x, y) ∈ M.

Observation 2. If p are compatible prices for a perfect matching M,
then M is a min cost perfect matching.

Compatible Prices

c(x, y)

0 0 3 1 2

0 1 0 1 5

4 3 3 3 0

0 0 1 1 0

1 2 2 0 4

cp(x, y)

3 8 9 15 10

4 10 7 16 14

9 13 11 19 10

8 13 12 20 13

1 7 5 11 9

8 13 11 19 13

5

4

3

0

8

cost(M) = Σ(x, y) ∈ M c(x, y) = (8+7+10+8+11) = 44
cost(M) = Σy ∈Y p(y) − Σx ∈X p(x) = (8+13+11+19+13) - (5+4+3+0+8) = 44

13

Successive shortest path.

Successive Shortest Path Algorithm

Successive-Shortest-Path(X, Y, c) {
 M ← φ
 foreach x ∈ X: p(x) ← 0
 foreach y ∈ Y: p(y) ← min e into y c(e)

 while (M is not a perfect matching) {
 Compute shortest path distances d
 P ← shortest alternating path using costs cp

 M ← updated matching after augmenting along P
 foreach v ∈ X ∪ Y: p(v) ← p(v) + d(v)
 }
 return M
}

p is compatible
with M = φ

14

Lemma 1. Let p be compatible prices for matching M. Let d be
shortest path distances in GM with costs cp. All edges (x, y) on shortest
path have cp+d(x, y) = 0.

Pf. Let (x, y) be some edge on shortest path.
 If (x, y) ∈ M, then (y, x) on shortest path and d(x) = d(y) - cp(x, y).

If (x, y) ∉ M, then (x, y) on shortest path and d(y) = d(x) + cp(x, y).
 In either case, d(x) + cp(x, y) - d(y) = 0.
 By definition, cp(x, y) = p(x) + c(x, y) - p(y).
 Substituting for cp(x, y) yields:

(p(x) + d(x)) + c(x, y) - (p(y) + d(y)) = 0.
 In other words, cp+d(x, y) = 0. ▪

Maintaining Compatible Prices

Reduced costs: cp(x, y) = p(x) + c(x, y) - p(y).

forward or reverse edges

15

Lemma 2. Let p be compatible prices for matching M. Let d be
shortest path distances in GM with costs cp. Then p' = p + d are also
compatible prices for M.

Pf. (x, y) ∈ M
 (y, x) is the only edge entering x in GM. Thus, (y, x) on shortest path.
 By Lemma 1, cp+d(x, y) = 0.

Pf. (x, y) ∉ M
 (x, y) is an edge in GM ⇒ d(y) ≤ d(x) + cp(x, y).
 Substituting cp(x, y) = p(x) + c(x, y) - p(y) ≥ 0 yields

(p(x) + d(x)) + c(x, y) - (p(y) + d(y)) ≥ 0.
 In other words, cp+d(x, y) ≥ 0. ▪

Maintaining Compatible Prices

Compatible prices. For each node v:
 (i) cp(x, y) ≥ 0 for for all (x, y) ∉ M.
 (ii) cp(x, y) = 0 for for all (x, y) ∈ M.

16

Lemma 3. Let M' be matching obtained by augmenting along a min cost
path with respect to cp+d. Then p' = p + d is compatible with M'.

Pf.
 By Lemma 2, the prices p + d are compatible for M.
 Since we augment along a min cost path, the only edges (x, y) that

swap into or out of the matching are on the shortest path.
 By Lemma 1, these edges satisfy cp+d(x, y) = 0.
 Thus, compatibility is maintained. ▪

Maintaining Compatible Prices

Compatible prices. For each node v:
 (i) cp(x, y) ≥ 0 for for all (x, y) ∉ M.
 (ii) cp(x, y) = 0 for for all (x, y) ∈ M.

17

Invariant. The algorithm maintains a matching M and compatible prices
p.
Pf. Follows from Lemmas 2 and 3 and initial choice of prices. ▪

Theorem. The algorithm returns a min cost perfect matching.
Pf. Upon termination M is a perfect matching, and p are compatible
prices. Optimality follows from Observation 2. ▪

Theorem. The algorithm can be implemented in O(n3) time.
Pf.

 Each iteration increases the cardinality of M by 1 ⇒ n iterations.
 Bottleneck operation is computing shortest path distances d.

Since all costs are nonnegative, each iteration takes O(n2) time
using (dense) Dijkstra. ▪

Successive Shortest Path: Analysis

18

Weighted bipartite matching. Given weighted bipartite graph, find
maximum cardinality matching of minimum weight.

Successive shortest path algorithm. O(mn log n) time using heap-based
version of Dijkstra's algorithm.

Best known bounds. O(mn1/2) deterministic; O(n2.376) randomized.

Planar weighted bipartite matching. O(n3/2 log5 n).

Weighted Bipartite Matching

m edges, n nodes

Input Queued Switching

20

Input-Queued Switching

Input-queued switch.
 n inputs and n outputs in an n-by-n crossbar layout.
 At most one cell can depart an input at a time.
 At most one cell can arrive at an output at a time.
 Cell arrives at input x and must be routed to output y.

x3

x2

x1

y1 y2 y3

inputs

outputs

21

Input-Queued Switching

FIFO queueing. Each input x maintains one queue of cells to be routed.

Head-of-line blocking (HOL).
 A cell can be blocked by a cell queued ahead of it that is destined

for a different output.
 Can limit throughput to 58%, even when arrivals are uniform.

FIFO

outputs

y2 y2y1

y2

y1 y3y3 x3

x2

x1

y1 y2 y3

22

Input-Queued Switching

Virtual output queueing (VOQ). Each input x maintains n queue of cells,
one for each output y.

Maximum size matching. Find a max cardinality matching.
 Achieves 100% when arrivals are uniform.
 Can starve input-queues when arrivals are non-uniform.

outputs

y2 y2y2

y3y3

y1

y2 y2y2

y3y3 y3y3

y2 y2y2

y3

VOQ

x3

x2

x1

y1 y2 y3

23

Input-Queued Switching

Max weight matching. Find a min cost perfect matching between inputs
x and outputs y, where c(x, y) equals:

 [LQF] The number of cells waiting to go from input x to output y.
 [OCF] The waiting time of the cell at the head of VOQ from x to y.

Theorem. LQF and OCF achieve 100% throughput if arrivals are
independent.

Practice.
 Too slow in practice for this application; difficult to implement in

hardware. Provides theoretical framework.
 Use maximal (weighted) matching ⇒ 2-approximation.

Reference: http://robotics.eecs.berkeley.edu/~wlr/Papers/AMMW.pdf

