*7.13 Assi Probl
Chapter 7 7 ssignment Problem

Network Flow

y! Ngmithm Jesip

N JON KLEINBERG - EVA TARDOS

PEARSON!  Slides by Kevin Wayne.
“Tinew o Copyright © 2005 Pearson-Addison Wesley.
% All rights reserved.

Assignment Problem Applications
Assignment problem. Natural applications.
= Input: weighted, complete bipartite graph G = (L UR, E) « Match jobs to machines.
with |L| = |R]. « Match personnel to tasks.
« Goal: find a perfect matching of min weight. » Match PU students to writing seminars.

Non-obvious applications.
« Vehicle routing.

1 3.8 9 15 10 Min cost perfect matching « Signal processing.
: 4 1007 16 14 M=(12', 23 35 4.1 54') . Vir*’ru.al ouTRuT queueir?g.
« Multiple object tracking.
39 13 11 19 110 @Y 2 0 e MO ol = 40 . Approximate string matching.
418 13 12 20 13 « Enhance accuracy of solving linear systems of equations.



Bipartite Matching

Bipartite matching. Can solve via reduction to max flow.

Flow. During Ford-Fulkerson, all capacities and flows are 0/1. Flow
corresponds to edges in a matching M.

Residual graph G,, simplifies to:
« If (X,y) € M, then (x,y) is in Gy.
« If (X,y) EM, the (y, x) is in G,

Augmenting path simplifies to:
» Edge from s to an unmatched node x € X.
« Alternating sequence of unmatched and matched edges.
» Edge from unmatched nodey €Y to 1.

Assignment Problem: Successive Shortest Path Algorithm

Cost of an alternating path. Pay c(x, y) to match x-y; receive c(x, y) to
unmatch x-y.

cost(2-1)=7
cost@-2-1-1)=2-6+10=6

Shortest alternating path. Alternating path from any unmatched node
x € X to any unmatched node y € Y with smallest cost.

Successive shortest path algorithm.
« Start with empty matching.
« Repeatedly augment along a shortest alternating path.

Alternating Path

Alternating path. Alternating sequence of unmatched and matched
edges, from unmatched node x € X to unmatched nodey €Y.

matching M alternating path matching M'

Finding The Shortest Alternating Path

Shortest alternating path. Corresponds to shortest s-t path in G,,.

10 4@

: s e N
0 7

Concern. Edge costs can be negative.

Fact. If always choose shortest alternating path, then G, contains no
negative cycles = compute using Bellman-Ford.

Our plan. Use duality to avoid negative edge costs (and negative cost
cycles) = compute using Dijkstra.



Equivalent Assignment Problem

Duality intuition. Adding (or subtracting) a constant to every entry in
row x or column y does not change the min cost perfect matching(s).

4 10 7 . 14 subtract 11 from 4 10 7 . 14
column 4

9 13 11-10 o 9 13 11-10

Reduced Costs

Reduced costs. For x € X,y €Y, define cP(x, y) = p(x) + c(x, y) - p(y).

Observation 1. Finding a min cost perfect matching with reduced costs
is equivalent to finding a min cost perfect matching with original costs.

N
— —
w o
H.
—
— —
o o

—
.-F
w >

0
0
4
.13 12 20 13 o .
5.9 1
11

[o]

Equivalent Assignment Problem

Duality intuition. Adding p(x) to row x and subtracting p(y) from row y
does not change the min cost perfect matching(s).

IS
—_— —_—

w o

H.

=

—_ —_

o o

—

S

w

-13 12 20 13
&k

<]

o

Compatible Prices

Compatible prices. For each node v, maintain prices p(v) such that:
.« (i) cP(x,y)=0 for forall (x,y) & M.
« (ii) cP(x,y) =0 for forall (x,y) E M.

Observation 2. If p are compatible prices for a perfect matching M,
then M is a min cost perfect matching.

c(x,y) cP(x,y)

IS
—_— —_
w o
.-‘.
=
—_ —_
v o

—
N
w

0
0
4
.131220130 .
5.98 1
11

cost(M) = 2, e C(X, y) = (8+7+10+8+11) = 44

cost(M) = = oy P(y) - Zgex P(X) = (8+13+11+19+13) - (5+4+3+0+8) = 44

12



Successive Shortest Path Algorithm

Successive shortest path.

Successive-Shortest-Path (X, Y, c) {
M < ¢
foreach x € X: p(x) <« 0
foreach y € Y: p(y) < min

p is compatible

ith M =
e into y c(e) i ¢

while (M is not a perfect matching) {
Compute shortest path distances d
P < shortest alternating path using costs cP
M < updated matching after augmenting along P
foreach v € X U Y: p(v) < p(v) + d(v)

}

return M

Maintaining Compatible Prices

Lemma 2. Let p be compatible prices for matching M. Let d be
shortest path distances in 6,, with costs cP. Then p' = p + d are also
compatible prices for M.

Pf. (x,y)EM
« (v, x) is the only edge entering x in 6,,. Thus, (y, x) on shortest path.
« Bylemmal, crd(x,y)=0.

Pf. (x,Y)EM
« (x,y)isanedgeinG, = d(y) = d(x) + cP(x, y).
« Substituting cP(x, y) = p(x) + c(x, y) - p(y) = O yields
(p(x) + d(x)) + c(x,¥) - (p(y) + d(y)) = O.
« Inother words, cP*d(x,y)=0. =

Compatible prices. For each node v:
(i) cP(x,y) =0 for forall (x,y) & M.
(ii) cP(x,y) =0 for for all (x,y) E M.

Maintaining Compatible Prices

Lemma 1. Let p be compatible prices for matching M. Let d be
shortest path distances in G,, with costs cp. All edges (x, y) on shortest
pCl'fh have c? d(X, Y) = 0. forward or reverse edges
Pf. Let (x, y) be some edge on shortest path.
« If (x,y) € M, then (y, x) on shortest path and d(x) = d(y) - cP(x, y).
If (x,y) & M, then (x, y) on shortest path and d(y) = d(x) + cP(x, y).
«» Ineither case, d(x) + cP(x,y) - d(y) = O.
« By definition, cP(x, y) = p(x) + c(x, y) - p(y).
« Substituting for cP(x, y) yields:
(p(x) + d(x)) + c(x, ) - (p(y) + d(y)) = .
» Inother words, cP*d(x,y)=0. =

Reduced costs: cP(x,y) = p(x) + c(x, y) - p(y).

Maintaining Compatible Prices

Lemma 3. Let M' be matching obtained by augmenting along a min cost
path with respect to cp*d. Then p' = p + d is compatible with M'.

Pf.
« By Lemma 2, the prices p + d are compatible for M.
«» Since we augment along a min cost path, the only edges (x, y) that
swap info or out of the matching are on the shortest path.
« By Lemma 1, these edges satisfy cP*d(x, y) = O.
«» Thus, compatibility is maintained. =

Compatible prices. For each node v:
(i) cP(x,y)=0 for forall (x,y) & M.
(ii) cP(x,y) =0 for for all (x,y) E M.



Successive Shortest Path: Analysis

Invariant. The algorithm maintains a matching M and compatible prices

p.
Pf. Follows from Lemmas 2 and 3 and initial choice of prices. =

Theorem. The algorithm returns a min cost perfect matching.
Pf. Upon termination M is a perfect matching, and p are compatible
prices. Optimality follows from Observation 2. =

Theorem. The algorithm can be implemented in O(n3) time.
Pf.
« Each iteration increases the cardinality of M by 1 = n iterations.
» Bottleneck operation is computing shortest path distances d.
Since all costs are nonnegative, each iteration takes O(n?) time
using (dense) Dijkstra. =

Input Queued Switching

Weighted Bipartite Matching

Weighted bipartite matching. Given weighted bipartite graph, find
maximum cardinality matching of minimum weight. m edges, n nodes
Successive shortest path algorithm. O(mn log n) time using heap-based
version of Dijkstra's algorithm.

Best known bounds. O(mn'/2) deterministic; O(n237¢) randomized.

Planar weighted bipartite matching. O(n3/2log5 n).

Input-Queued Switching

Input-queued switch.
« hinputs and n outputs in an n-by-n crossbar layout.
» At most one cell can depart an input at a time.
« At most one cell can arrive at an output at a time.
« Cell arrives at input x and must be routed to output y.

X o
inputs X,
X3

Y1 Y2 Y3

outputs



Input-Queued Switching

FIFO queueing. Each input x maintains one queue of cells to be routed.

Head-of-line blocking (HOL).
« A cell can be blocked by a cell queued ahead of it that is destined
for a different output.
« Can limit throughput to 58%, even when arrivals are uniform.

[Tl x, °

FIFO X,

[Llld

Yi Y2 Y3

outputs

21

Input-Queued Switching

Max weight matching. Find a min cost perfect matching between inputs
x and outputs y, where c(x, y) equals:

» [LQF] The number of cells waiting to go from input x to output y.

» [OCF] The waiting time of the cell at the head of VOQ from x toy.

Theorem. LQF and OCF achieve 100% throughput if arrivals are
independent.

Practice.
« Too slow in practice for this application; difficult to implement in
hardware. Provides theoretical framework.
» Use maximal (weighted) matching = 2-approximation.

Reference: http://robotics.eecs.berkeley.edu/~wlr/Papers/ AMMW pdf

23

Input-Queued Switching

Virtual output queueing (VOQ). Each input x maintains n queue of cells,
one for each output y.

Maximum size matching. Find a max cardinality matching.
« Achieves 100% when arrivals are uniform.
« Can starve input-queues when arrivals are non-uniform.

Yo|velye Xy o)
Yaly.
VOQ Yelya[Ye X,
¥a[vs]ysys
YelYe|ye X3
¥s
Y1 Y2 Y3
outputs



