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Assignment Problem

Assignment problem.
 Input:  weighted, complete bipartite graph G = (L ∪ R, E)

with |L| = |R|.
 Goal:  find a perfect matching of min weight.
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Min cost perfect matching

M = { 1-2', 2-3', 3-5', 4-1', 5-4' }

cost(M) = 8 + 7 + 10 + 8 + 11 = 44
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Applications

Natural applications.
 Match jobs to machines.
 Match personnel to tasks.
 Match PU students to writing seminars.

Non-obvious applications.
 Vehicle routing.
 Signal processing.
 Virtual output queueing.
 Multiple object tracking.
 Approximate string matching.
 Enhance accuracy of solving linear systems of equations.
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Bipartite matching.  Can solve via reduction to max flow.

Flow.  During Ford-Fulkerson, all capacities and flows are 0/1.  Flow
corresponds to edges in a matching M.

Residual graph GM simplifies to:
 If (x, y) ∉ M, then (x, y) is in GM.
 If (x, y) ∈ M, the (y, x) is in GM.

Augmenting path simplifies to:
 Edge from s to an unmatched node x ∈ X.
 Alternating sequence of unmatched and matched edges.
 Edge from unmatched node y ∈ Y to t.

Bipartite Matching
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Alternating path.  Alternating sequence of unmatched and matched
edges, from unmatched node x ∈ X to unmatched node y ∈ Y.

Alternating Path
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Cost of an alternating path.  Pay c(x, y) to match x-y; receive c(x, y) to
unmatch x-y.

Shortest alternating path.  Alternating path from any unmatched node
x ∈ X to any unmatched node y ∈ Y with smallest cost.

Successive shortest path algorithm.
 Start with empty matching.
 Repeatedly augment along a shortest alternating path.

Assignment Problem:  Successive Shortest Path Algorithm
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cost(2 - 1') = 7
cost(2 - 2'- 1 - 1') = 2 - 6 + 10 = 6
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Shortest alternating path.  Corresponds to shortest s-t path in GM.

Concern.  Edge costs can be negative.

Fact.  If always choose shortest alternating path, then GM contains no
negative cycles  ⇒  compute using Bellman-Ford.

Our plan.  Use duality to avoid negative edge costs (and negative cost
cycles)  ⇒  compute using Dijkstra.

Finding The Shortest Alternating Path
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Duality intuition.  Adding (or subtracting) a constant to every entry in
row x or column y does not change the min cost perfect matching(s).

Equivalent Assignment Problem
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subtract 11 from
column 4
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Duality intuition.  Adding p(x) to row x and subtracting p(y) from row y
does not change the min cost perfect matching(s).

Equivalent Assignment Problem
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Reduced costs.  For x ∈ X, y ∈ Y, define cp(x, y) = p(x) + c(x, y) - p(y).

Observation 1.  Finding a min cost perfect matching with reduced costs
is equivalent to finding a min cost perfect matching with original costs.

Reduced Costs
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Compatible prices.  For each node v, maintain prices p(v) such that:
 (i)   cp(x, y) ≥ 0 for for all (x, y) ∉ M.
 (ii)  cp(x, y) = 0 for for all (x, y) ∈ M.

Observation 2.  If p are compatible prices for a perfect matching M,
then M is a min cost perfect matching.

Compatible Prices
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cost(M) = Σ(x, y) ∈ M c(x, y) = (8+7+10+8+11) = 44
cost(M) = Σy ∈Y p(y)  −  Σx ∈X p(x) = (8+13+11+19+13) - (5+4+3+0+8) = 44
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Successive shortest path.

Successive Shortest Path Algorithm

Successive-Shortest-Path(X, Y, c) {
   M ← φ
   foreach x ∈ X:  p(x) ← 0
   foreach y ∈ Y:  p(y) ← min e into y c(e)

   while (M is not a perfect matching) {
      Compute shortest path distances d
      P ← shortest alternating path using costs cp

      M ← updated matching after augmenting along P
      foreach v ∈ X ∪ Y:  p(v) ← p(v) + d(v)
   }
   return M
}

p is compatible
with M = φ
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Lemma 1.  Let p be compatible prices for matching M.  Let d be
shortest path distances in GM with costs cp. All edges (x, y) on shortest
path have cp+d(x, y) = 0.

Pf.  Let (x, y) be some edge on shortest path.
 If (x, y) ∈ M, then (y, x) on shortest path and d(x) = d(y) - cp(x, y).

If (x, y) ∉ M, then (x, y) on shortest path and d(y) = d(x) + cp(x, y).
 In either case, d(x) + cp(x, y) - d(y) = 0.
 By definition, cp(x, y) = p(x) + c(x, y) - p(y).
 Substituting for cp(x, y) yields:

(p(x) + d(x)) + c(x, y) - (p(y) + d(y)) = 0.
 In other words, cp+d(x, y) = 0.   ▪

Maintaining Compatible Prices

Reduced costs:  cp(x, y) = p(x) + c(x, y) - p(y).

forward or reverse edges
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Lemma 2.  Let p be compatible prices for matching M.  Let d be
shortest path distances in GM with costs cp. Then p' = p + d are also
compatible prices for M.

Pf.  (x, y) ∈ M
 (y, x) is the only edge entering x in GM. Thus, (y, x) on shortest path.
 By Lemma 1,  cp+d(x, y) = 0.

Pf.  (x, y) ∉ M
 (x, y) is an edge in GM  ⇒  d(y) ≤ d(x) + cp(x, y).
 Substituting cp(x, y) = p(x) + c(x, y) - p(y) ≥ 0 yields

(p(x) + d(x)) + c(x, y) - (p(y) + d(y)) ≥ 0.
 In other words, cp+d(x, y) ≥ 0.   ▪

Maintaining Compatible Prices

Compatible prices.  For each node v:
  (i)   cp(x, y) ≥ 0 for for all (x, y) ∉ M. 
  (ii)  cp(x, y) = 0 for for all (x, y) ∈ M.
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Lemma 3.  Let M' be matching obtained by augmenting along a min cost
path with respect to cp+d.  Then p' = p + d is compatible with M'.

Pf.
 By Lemma 2, the prices p + d are compatible for M.
 Since we augment along a min cost path, the only edges (x, y) that

swap into or out of the matching are on the shortest path.
 By Lemma 1, these edges satisfy cp+d(x, y) = 0.
 Thus, compatibility is maintained.   ▪

Maintaining Compatible Prices

Compatible prices.  For each node v:
  (i)   cp(x, y) ≥ 0 for for all (x, y) ∉ M. 
  (ii)  cp(x, y) = 0 for for all (x, y) ∈ M.
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Invariant.  The algorithm maintains a matching M and compatible prices
p.
Pf.  Follows from Lemmas 2 and 3 and initial choice of prices.   ▪

Theorem.  The algorithm returns a min cost perfect matching.
Pf.  Upon termination M is a perfect matching, and p are compatible
prices.  Optimality follows from Observation 2.   ▪

Theorem.  The algorithm can be implemented in O(n3) time.
Pf.

 Each iteration increases the cardinality of M by 1  ⇒ n iterations.
 Bottleneck operation is computing shortest path distances d.

Since all costs are nonnegative, each iteration takes O(n2) time
using (dense) Dijkstra.   ▪

Successive Shortest Path:  Analysis
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Weighted bipartite matching.  Given weighted bipartite graph, find
maximum cardinality matching of minimum weight.

Successive shortest path algorithm.  O(mn log n) time using heap-based
version of Dijkstra's algorithm.

Best known bounds.  O(mn1/2) deterministic; O(n2.376) randomized.

Planar weighted bipartite matching.  O(n3/2 log5 n).

Weighted Bipartite Matching

m edges, n nodes

Input Queued Switching
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Input-Queued Switching

Input-queued switch.
 n inputs and n outputs in an n-by-n crossbar layout.
 At most one cell can depart an input at a time.
 At most one cell can arrive at an output at a time.
 Cell arrives at input x and must be routed to output y.
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Input-Queued Switching

FIFO queueing.  Each input x maintains one queue of cells to be routed.

Head-of-line blocking (HOL).
 A cell can be blocked by a cell queued ahead of it that is destined

for a different output.
 Can limit throughput to 58%, even when arrivals are uniform.

FIFO
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Input-Queued Switching

Virtual output queueing (VOQ).  Each input x maintains n queue of cells,
one for each output y.

Maximum size matching.  Find a max cardinality matching.
 Achieves 100% when arrivals are uniform.
 Can starve input-queues when arrivals are non-uniform.
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Input-Queued Switching

Max weight matching.  Find a min cost perfect matching between inputs
x and outputs y, where c(x, y) equals:

 [LQF]  The number of cells waiting to go from input x to output y.
 [OCF]  The waiting time of the cell at the head of VOQ from x to y.

Theorem.  LQF and OCF achieve 100% throughput if arrivals are
independent.

Practice.
 Too slow in practice for this application; difficult to implement in

hardware.  Provides theoretical framework.
 Use maximal (weighted) matching  ⇒  2-approximation.

Reference: http://robotics.eecs.berkeley.edu/~wlr/Papers/AMMW.pdf


