
1

Chapter 6

Dynamic Programming

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

6.8 Shortest Paths

3

Shortest Paths

Shortest path problem. Given a directed graph G = (V, E), with edge
weights cvw, find shortest path from node s to node t.

Ex. Nodes represent agents in a financial setting and cvw is cost of
transaction in which we buy from agent v and sell immediately to w.

s

3

t

2

6

7

4
5

10

18
 -16

9

 6

15 -8

 30

 20

44

16

11

6

19

6

allow negative weights

4

Shortest Paths: Failed Attempts

Dijkstra. Can fail if negative edge costs.

Re-weighting. Adding a constant to every edge weight can fail.

u

t

s v

2

 1

3

-6

s t

2

 3

2

-3

3

5 5

66

0

5

Shortest Paths: Negative Cost Cycles

Negative cost cycle.

Observation. If some path from s to t contains a negative cost cycle,
there does not exist a shortest s-t path; otherwise, there exists one
that is simple.

s t
W

c(W) < 0

 -6

 7

 -4

6

Shortest Paths: Dynamic Programming

Def. OPT(i, v) = length of shortest v-t path P using at most i edges.

 Case 1: P uses at most i-1 edges.
– OPT(i, v) = OPT(i-1, v)

 Case 2: P uses exactly i edges.
– if (v, w) is first edge, then OPT uses (v, w), and then selects best

w-t path using at most i-1 edges

Remark. By previous observation, if no negative cycles, then
OPT(n-1, v) = length of shortest v-t path.

!

OPT(i, v) =

 0 if i = 0

 min OPT(i "1, v) ,
(v, w)# E

min OPT(i "1, w)+ c
vw{ }

$
%
&

'
(
)

otherwise

$

%
*

& *

7

Shortest Paths: Implementation

Analysis. Θ(mn) time, Θ(n2) space.

Finding the shortest paths. Maintain a "successor" for each table
entry.

Shortest-Path(G, t) {
 foreach node v ∈ V
 M[0, v] ← ∞
 M[0, t] ← 0

 for i = 1 to n-1
 foreach node v ∈ V
 M[i, v] ← M[i-1, v]
 foreach edge (v, w) ∈ E
 M[i, v] ← min { M[i, v], M[i-1, w] + cvw }
}

8

Shortest Paths: Practical Improvements

Practical improvements.
 Maintain only one array M[v] = shortest v-t path that we have

found so far.
 No need to check edges of the form (v, w) unless M[w] changed

in previous iteration.

Theorem. Throughout the algorithm, M[v] is length of some v-t path,
and after i rounds of updates, the value M[v] is no larger than the length
of shortest v-t path using ≤ i edges.

Overall impact.
 Memory: O(m + n).
 Running time: O(mn) worst case, but substantially faster in practice.

9

Bellman-Ford: Efficient Implementation

Push-Based-Shortest-Path(G, s, t) {
 foreach node v ∈ V {
 M[v] ← ∞
 successor[v] ← φ
 }

 M[t] = 0
 for i = 1 to n-1 {
 foreach node w ∈ V {
 if (M[w] has been updated in previous iteration) {
 foreach node v such that (v, w) ∈ E {
 if (M[v] > M[w] + cvw) {
 M[v] ← M[w] + cvw
 successor[v] ← w
 }
 }
 }
 If no M[w] value changed in iteration i, stop.
 }
}

6.9 Distance Vector Protocol

11

Distance Vector Protocol

Communication network.
 Node ≈ router.
 Edge ≈ direct communication link.
 Cost of edge ≈ delay on link.

Dijkstra's algorithm. Requires global information of network.

Bellman-Ford. Uses only local knowledge of neighboring nodes.

Synchronization. We don't expect routers to run in lockstep. The
order in which each foreach loop executes in not important. Moreover,
algorithm still converges even if updates are asynchronous.

naturally nonnegative, but Bellman-Ford used anyway!

12

Distance Vector Protocol

Distance vector protocol.
 Each router maintains a vector of shortest path lengths to every

other node (distances) and the first hop on each path (directions).
 Algorithm: each router performs n separate computations, one for

each potential destination node.
 "Routing by rumor."

Ex. RIP, Xerox XNS RIP, Novell's IPX RIP, Cisco's IGRP, DEC's DNA
Phase IV, AppleTalk's RTMP.

Caveat. Edge costs may change during algorithm (or fail completely).

tv 1s 1

1

deleted

"counting to infinity"
2 1

13

Path Vector Protocols

Link state routing.
 Each router also stores the entire path.
 Based on Dijkstra's algorithm.
 Avoids "counting-to-infinity" problem and related difficulties.
 Requires significantly more storage.

Ex. Border Gateway Protocol (BGP), Open Shortest Path First (OSPF).

not just the distance and first hop 6.10 Negative Cycles in a Graph

15

Detecting Negative Cycles

Lemma. If OPT(n,v) = OPT(n-1,v) for all v, then no negative cycles.
Pf. Bellman-Ford algorithm.

Lemma. If OPT(n,v) < OPT(n-1,v) for some node v, then (any) shortest
path from v to t contains a cycle W. Moreover W has negative cost.

Pf. (by contradiction)
 Since OPT(n,v) < OPT(n-1,v), we know P has exactly n edges.
 By pigeonhole principle, P must contain a directed cycle W.
 Deleting W yields a v-t path with < n edges ⇒ W has negative cost.

v t
W

c(W) < 0
16

Detecting Negative Cycles

Theorem. Can detect negative cost cycle in O(mn) time.
 Add new node t and connect all nodes to t with 0-cost edge.
 Check if OPT(n, v) = OPT(n-1, v) for all nodes v.

– if yes, then no negative cycles
– if no, then extract cycle from shortest path from v to t

v

 18

 2

 5
 -23

 -15
 -11

 6

t

 0

 0

 0 0
 0

17

Detecting Negative Cycles: Application

Currency conversion. Given n currencies and exchange rates between
pairs of currencies, is there an arbitrage opportunity?

Remark. Fastest algorithm very valuable!

F$

£ ¥DM

 1/7

3/102/3 2

 170 56

 3/504/3

8

IBM

1/10000

800

18

Detecting Negative Cycles: Summary

Bellman-Ford. O(mn) time, O(m + n) space.
 Run Bellman-Ford for n iterations (instead of n-1).
 Upon termination, Bellman-Ford successor variables trace a negative

cycle if one exists.
 See p. 304 for improved version and early termination rule.

