

6.8 Shortest Paths

Shortest Paths

Shortest path problem. Given a directed graph $G=(V, E)$, with edge weights $c_{v w}$, find shortest path from node s to node t.
allow negative weights

Ex. Nodes represent agents in a financial setting and $c_{v w}$ is cost of transaction in which we buy from agent v and sell immediately to w.

Shortest Paths: Failed Attempts

Dijkstra. Can fail if negative edge costs.

Re-weighting. Adding a constant to every edge weight can fail.

Negative cost cycle.

Observation. If some path from s to t contains a negative cost cycle, there does not exist a shortest s-t path; otherwise, there exists one that is simple.

$c(W)<0$

Shortest Paths: Implementation

```
Shortest-Path(G, t) {
    foreach node v \in V
        M[0, v] \leftarrow \infty
    M[0, t] \leftarrow 0
    for i = 1 to n-1
        foreach node v \in V
            M[i, v] \leftarrowM[i-1, v]
        foreach edge (v,w) \in E
            M[i,v] \leftarrow min { M[i,v], M[i-1,w] + c cww }
}
```

Analysis. $\Theta(m n)$ time, $\Theta\left(n^{2}\right)$ space.

Finding the shortest paths. Maintain a "successor" for each table entry.

Def. OPT $(i, v)=$ length of shortest $v-\dagger$ path P using at most i edges.

- Case 1: P uses at most $\mathrm{i}-1$ edges. - OPT(i, v) = OPT(i-1, v)
- Case 2: Puses exactly i edges.
- if (v, w) is first edge, then OPT uses (v, w), and then selects best $w-t$ path using at most i-1 edges

$$
O P T(i, v)=\left\{\begin{array}{ll}
0 & \text { if } \mathrm{i}=0 \\
\min \left\{O P T(i-1, v), \min _{(v, w) \in E}\left\{O P T(i-1, w)+c_{v w}\right\}\right\}
\end{array} \begin{array}{l}
\text { otherwise }
\end{array}\right.
$$

Remark. By previous observation, if no negative cycles, then OPT $(n-1, v)=$ length of shortest $v-t$ path.

Shortest Paths: Practical Improvements

Practical improvements.

- Maintain only one array $M[v]=$ shortest v - t path that we have found so far.
- No need to check edges of the form (v, w) unless M[w] changed in previous iteration.

Theorem. Throughout the algorithm, $M[v]$ is length of some $v-t$ path, and after i rounds of updates, the value $M[v]$ is no larger than the length of shortest v-t path using $\leq i$ edges.

Overall impact.

- Memory: $O(m+n)$
- Running time: $O(m n)$ worst case, but substantially faster in practice

```
Push-Based-Shortest-Path (G, s, t) {
    foreach node v G V {
        M[v] \leftarrow\infty
        successor[v] }\leftarrow
    }
    M[t] = 0
    for i = 1 to n-1
        foreach node w G V {
        if (M[w] has been updated in previous iteration)
        foreach node v such that (v,w) \inE {
            if (M[v] > M[w] + covw) {
                M[v] \leftarrowM[w] + C Cww
                successor[v] \leftarroww
            }
        }
        }
        If no M[w] value changed in iteration i, stop.
    }
```

\}

Distance Vector Protocol

Communication network.

- Node \approx router.
- Edge \approx direct communication link.
- Cost of edge \approx delay on link. \leftarrow naturally nonnegative, but Bellman-Ford used anyway

Dijkstra's algorithm. Requires global information of network.
Bellman-Ford. Uses only local knowledge of neighboring nodes.

Synchronization. We don't expect routers to run in lockstep. The order in which each foreach loop executes in not important. Moreover, algorithm still converges even if updates are asynchronous.

6.9 Distance Vector Protocol

Distance Vector Protocol

Distance vector protocol.

- Each router maintains a vector of shortest path lengths to every other node (distances) and the first hop on each path (directions).
- Algorithm: each router performs n separate computations, one for each potential destination node.
. "Routing by rumor."

Ex. RIP, Xerox XNS RIP, Novell's IPX RIP, Cisco's IGRP, DEC's DNA Phase IV, AppleTalk's RTMP.

Caveat. Edge costs may change during algorithm (or fail completely).

Link state routing.
not just the distance and first hop

- Each router also stores the entire path."
- Based on Dijkstra's algorithm.
- Avoids "counting-to-infinity" problem and related difficulties.
- Requires significantly more storage.

Ex. Border Gateway Protocol (BGP), Open Shortest Path First (OSPF).

Detecting Negative Cycles

Lemma. If $\operatorname{OPT}(n, v)=\operatorname{OPT}(n-1, v)$ for all v, then no negative cycles. Pf. Bellman-Ford algorithm.

Lemma. If $O P T(n, v)<O P T(n-1, v)$ for some node v, then (any) shortest path from v to t contains a cycle W. Moreover W has negative cost.

Pf. (by contradiction)

- Since OPT(n, v) < OPT($n-1, v$), we know P has exactly n edges.
- By pigeonhole principle, P must contain a directed cycle W.
- Deleting W yields a $v-t$ path with < n edges $\Rightarrow W$ has negative cost.

$c(W)<0$

6.10 Negative Cycles in a Graph

Theorem. Can detect negative cost cycle in $O(m n)$ time.

- Add new node \dagger and connect all nodes to t with 0-cost edge.
- Check if $\operatorname{OPT}(n, v)=\operatorname{OPT}(n-1, v)$ for all nodes v.
- if yes, then no negative cycles
- if no, then extract cycle from shortest path from v to t

Currency conversion. Given n currencies and exchange rates between pairs of currencies, is there an arbitrage opportunity?

Remark. Fastest algorithm very valuable!

Bellman-Ford. $O(m n)$ time, $O(m+n)$ space.

- Run Bellman-Ford for n iterations (instead of $n-1$).
- Upon termination, Bellman-Ford successor variables trace a negative cycle if one exists.
- See p. 304 for improved version and early termination rule.

