

Divide-and-conquer

- Break up problem into several parts.
- Solve each part recursively.
- Combine solutions to sub-problems into overall solution.

Most common usage

- Break up problem of size n into two equal parts of size $\frac{1}{2} n$.
- Solve two parts recursively.
- Combine two solutions into overall solution in linear time.

Consequence.

- Brute force: n^{2}.
- Divide-and-conquer: $n \log n$.

Divide et impera
Veni, vidi, vici.
Julius Caesar

5.1 Mergesort

Sorting. Given n elements, rearrange in ascending order.
Applications.

- Sort a list of names.
- Organize an MP3 library.
obvious applications
- Display Google PageRank results.
- List RSS news items in reverse chronological order
- Find the median.
- Find the closest pair.
- Binary search in a database.
- Identify statistical outliers.
- Find duplicates in a mailing list
- Data compression.
- Computer graphics.
- Computational biology.
- Supply chain management
- Book recommendations on Amazon.
- Load balancing on a parallel computer.

Mergesort.

- Divide array into two halves.
- Recursively sort each half.
- Merge two halves to make sorted whole.

Jon von Neumann (1945)

A Useful Recurrence Relation

Def. $T(n)=$ number of comparisons to mergesort an input of size n.

Mergesort recurrence.

$$
\mathrm{T}(n) \leq \begin{cases}0 & \begin{array}{l}
\text { if } n=1 \\
\underbrace{T(\lceil n / 2\rceil)}_{\text {solve left half }}
\end{array}+\underbrace{T(\lfloor n / 2\rfloor)}_{\text {solve right half }}+\underbrace{n}_{\text {merging }} \\
\text { otherwise }\end{cases}
$$

Solution. $T(n)=O\left(n \log _{2} n\right)$.

Assorted proofs. We describe several ways to prove this recurrence.
Initially we assume n is a power of 2 and replace \leq with $=$.

Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently?

- Linear number of comparisons.
- Use temporary array.

$$
\begin{array}{l|l|l|l}
\text { A } & \text { G } & \text { H } & \text { I }
\end{array}
$$

Challenge for the bored. In-place merge. [Kronrud, 1969] \uparrow using only a constant amount of extra storage

Proof by Recursion Tree

$$
\mathrm{T}(n)= \begin{cases}\begin{array}{ll}
0 & \text { if } n=1 \\
\underbrace{2 T(n / 2)}_{\text {sorting both halves }}+\underbrace{n}_{\text {merging }} & \text { otherwise }
\end{array}\end{cases}
$$

Claim. If $T(n)$ satisfies this recurrence, then $T(n)=n \log _{2} n$.
assumes n is a power of 2

$$
\mathrm{T}(n)= \begin{cases}0 & \text { if } n=1 \\ \underbrace{2 T(n / 2)}_{\text {sorting both halves }}+\underbrace{n}_{\text {merging }} & \text { otherwise }\end{cases}
$$

Pf. For $n>1$:

$$
\begin{array}{rll}
\frac{T(n)}{n} & =\frac{2 T(n / 2)}{n} & +1 \\
& =\frac{T(n / 2)}{n / 2} & +1 \\
& =\frac{T(n / 4)}{n / 4} & +1+1 \\
& \cdots & \\
& =\frac{T(n / n)}{n / n} & +\underbrace{1+\cdots+1}_{\log _{2} n} \\
& =\log _{2} n &
\end{array}
$$

Analysis of Mergesort Recurrence

Claim. If $T(n)$ satisfies the following recurrence, then $T(n) \leq n\lceil\lg n\rceil$.

$$
\mathrm{T}(n) \leq \begin{cases}0 & \text { if } n=1 \\ \underbrace{T(\lceil n / 2\rceil)}_{\text {solve left half }}+\underbrace{T(\lfloor n / 2\rfloor)}_{\text {solve right half }}+\underbrace{n}_{\text {merging }} & \text { otherwise }\end{cases}
$$

Pf. (by induction on n)

- Base case: $n=1$.
- Define $n_{1}=\lfloor n / 2\rfloor, n_{2}=\lceil n / 2\rceil$.
- Induction step: assume true for $1,2, \ldots, n-1$.

```
T(n)\leqT(\mp@subsup{n}{1}{})+T(\mp@subsup{n}{2}{})+n
    s n
    s n}\mp@subsup{n}{1}{}[\operatorname{lg}\mp@subsup{n}{2}{}]+\mp@subsup{n}{2}{}[\operatorname{lg}\mp@subsup{n}{2}{}]+
    = n [lg}\mp@subsup{n}{2}{}\rceil+
    s n(\lceillgn\rceil-1)+n
    = n\lceil [g n\rceil
```

Claim. If $T(n)$ satisfies this recurrence, then $T(n)=n \log _{2} n$.
assumes n is a power of 2

$$
\mathrm{T}(n)= \begin{cases}\underbrace{0}_{\text {0 }} & \text { if } n=1 \\ \text { sorting both halves }_{2 T(n / 2)}+\underbrace{n}_{\text {merging }} & \text { otherwise }\end{cases}
$$

Pf. (by induction on n)

- Base case: $n=1$.
- Inductive hypothesis: $T(n)=n \log _{2} n$.
- Goal: show that $T(2 n)=2 n \log _{2}(2 n)$.

```
T(2n)=2T(n)+2n
    = 2n log}2n+2
    = 2n(\mp@subsup{\operatorname{log}}{2}{}(2n)-1)+2n
    = 2n log
```


Music site tries to match your song preferences with others

- You rank n songs.
- Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.

- My rank: 1, 2, ..., n.
- Your rank: $a_{1}, a_{2}, \ldots, a_{n}$.
- Songs i and j inverted if $i<j$, but $a_{i}>a_{j}$.

	A	B	Congs	D	E	
Me	1	2	3	4	5	Inversions
You	1	3	4	2	5	$3-2,4-2$

Inversions
3-2, 4-2

Brute force: check all $\Theta\left(n^{2}\right)$ pairs i and j.

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
nquer.

Applications.

- Voting theory.
- Collaborative filtering.
- Measuring the "sortedness" of an array
- Sensitivity analysis of Google's ranking function.
- Rank aggregation for meta-searching on the Web.
- Nonparametric statistics (e.g., Kendall's Tau distance)

Counting Inversions: Divide-and-Conquer

Divide-and-conquer

- Divide: separate list into two pieces.

Divide-and-conquer.

- Divide: separate list into two pieces.
- Conquer: recursively count inversions in each half.

\section*{| 1 | 5 | 4 | 8 | 10 | 2 | 6 | 9 | 12 | 11 | 3 | 7 | Divide: $O(1)$. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

Counting Inversions: Combine

Combine: count blue-green inversions

- Assume each half is sorted.
- Count inversions where a_{i} and a_{j} are in different halves.
- Merge two sorted halves into sorted whole.
to maintain sorted invariant

\section*{| 3 | 7 | 10 | 14 | 18 | 19 |
| :--- | :--- | :--- | :--- | :--- | :--- |
 \[

$$
\begin{array}{c|c|c|c|c|c|}
\hline 2 & 11 & 16 & 17 & 23 & 25 \\
\hline 6 & 3 & 2 & 2 & 0 & 0
\end{array}
$$
\]}

13 blue-green inversions: $6+3+2+2+0+0$
Count: $O(n)$

| 2 | 3 | 7 | 10 | 11 | 14 | 16 | 17 | 18 | 19 | 23 | 25 | Merge: $O(n)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Divide-and-conquer.

- Divide: separate list into two pieces.
- Conquer: recursively count inversions in each half.
- Combine: count inversions where a_{i} and a_{j} are in different halves, and return sum of three quantities.

1	5	4	8	10	2	6	9	12	11	3	7	Divide: $O(1)$

1	5	4	8	10	2	6	9	12	11	3	7	Conquer: $2 \mathrm{~T}(\mathrm{n} / 2)$
5 blue-blue inversions					8 green-green inversions							
9 blue-green inversions												Combine: ???

$$
\text { Total }=5+8+9=22 .
$$

Counting Inversions: Implementation

Pre-condition. [Merge-and-Count] A and B are sorted. Post-condition. [Sort-and-Count] L is sorted.

```
Sort-and-Count(L) {
    if list L has one element
        return 0 and the list L
```

 Divide the list into two halves \(A\) and \(B\)
 (\(\left.x_{A}, A\right) \leftarrow\) Sort-and-Count \((A)\)
 \(\left(r_{B}, B\right) \leftarrow\) Sort-and-Count \((B)\)
 \((r, L) \leftarrow\) Merge-and-Count \((A, B)\)
 return \(\mathbf{r}=\mathbf{r}_{\mathrm{A}}+\mathrm{r}_{\mathrm{B}}+\mathbf{r}\) and the sorted list L
 \}

$$
T(n) \leq T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+O(n) \Rightarrow \mathrm{T}(n)=O(n \log n)
$$

5.4 Closest Pair of Points

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them.

Fundamental geometric primitive.

- Graphics, computer vision, geographic information systems,
molecular modeling, air traffic control.
- Special case of nearest neighbor, Euclidean MST, Voronoi.
${ }^{1}$ fast closest pair inspired fast algorithms for these problems

Brute force. Check all pairs of points p and q with $\Theta\left(n^{2}\right)$ comparisons.

1-D version. $O(n \log n$) easy if points are on a line.

Assumption. No two points have same \times coordinate.

\uparrow

to make presentation cleaner

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.
Obstacle. Impossible to ensure $n / 4$ points in each piece.

Algorithm.

- Divide: draw vertical line L so that roughly $\frac{1}{2} n$ points on each side.

Closest Pair of Points

Algorithm.

- Divide: draw vertical line L so that roughly $\frac{1}{2} n$ points on each side.
- Conquer: find closest pair in each side recursively.
- Combine: find closest pair with one point in each side. \leftarrow seems like $\Theta\left(n^{2}\right)$
- Return best of 3 solutions

Algorithm.

- Divide: draw vertical line L so that roughly $\frac{1}{2} n$ points on each side.
- Conquer: find closest pair in each side recursively.

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance $<\delta$.

Find closest pair with one point in each side, assuming that distance $<\delta$. - Observation: only need to consider points within δ of line L.

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.

- Observation: only need to consider points within δ of line L.
- Sort points in 2δ-strip by their y coordinate.
- Only check distances of those within 11 positions in sorted list!

Find closest pair with one point in each side, assuming that distance $<\delta$.

- Observation: only need to consider points within δ of line L.
- Sort points in 2δ-strip by their y coordinate.

Closest Pair of Points

Def. Let s_{i} be the point in the 2δ-strip, with the $i^{\text {th }}$ smallest y-coordinate.

Claim. If $|i-j| \geq 12$, then the distance between s_{i} and s_{j} is at least δ.
Pf.

- No two points lie in same $\frac{1}{2} \delta-$ by $-\frac{1}{2} \delta$ box.
- Two points at least 2 rows apart have distance $\geq 2\left(\frac{1}{2} \delta\right)$. -

Fact. Still true if we replace 12 with 7.


```
Closest-Pair(p
    Compute separation line L such that half the points
    are on one side and half on the other side.
    \delta
    \delta
    \delta}=\operatorname{min}(\mp@subsup{\delta}{1}{},\mp@subsup{\delta}{2}{}
    Delete all points further than \delta from separation line L
    Sort remaining points by y-coordinate.
    Scan points in y-order and compare distance between
    each point and next }11\mathrm{ neighbors. If any of these
    distances is less than \delta, update \delta.
    return \delta.
}
\(O(n \log n)\)
\(2 T(n / 2)\)
```

Running time.

$$
\mathrm{T}(n) \leq 2 T(n / 2)+O(n \log n) \Rightarrow \mathrm{T}(n)=O\left(n \log ^{2} n\right)
$$

Q. Can we achieve $O(n \log n)$?
A. Yes. Don't sort points in strip from scratch each time.

- Each recursive returns two lists: all points sorted by y coordinate, and all points sorted by \times coordinate.
- Sort by merging two pre-sorted lists.

$$
T(n) \leq 2 T(n / 2)+O(n) \Rightarrow \mathrm{T}(n)=O(n \log n)
$$

