

5.1 Mergesort

Divide-and-Conquer

Divide-and-conquer.

- Break up problem into several parts.
- Solve each part recursively.
- Combine solutions to sub-problems into overall solution.

Most common usage.

- Break up problem of size n into two equal parts of size $\frac{1}{2}$ n.
- Solve two parts recursively.
- Combine two solutions into overall solution in linear time.

Consequence.

- Brute force: n².
- Divide-and-conquer: n log n.

Divide et impera. Veni, vidi, vici.

- Julius Caesar

Sorting

Sorting. Given n elements, rearrange in ascending order.

Applications.

- Sort a list of names.
- Organize an MP3 library.

- obvious applications
- Display Google PageRank results.
- List RSS news items in reverse chronological order.
- Find the median.
- Find the closest pair.

problems become easy once items are in sorted order

 Binary search in a database. Identify statistical outliers.

- Find duplicates in a mailing list.
- Data compression.
- Computer graphics.
- Computational biology.
- Supply chain management.

non-obvious applications

- Book recommendations on Amazon.
- Load balancing on a parallel computer.

Mergesort

Mergesort.

- Divide array into two halves.
- Recursively sort each half.
- Merge two halves to make sorted whole.

Jon von Neumann (1945)

A Useful Recurrence Relation

Def. T(n) = number of comparisons to mergesort an input of size n.

Mergesort recurrence.

$$T(n) \le \begin{cases} \underbrace{0}_{T(\lceil n/2 \rceil)} + \underbrace{T(\lceil n/2 \rceil)}_{\text{solve right half}} + \underbrace{n}_{\text{merging}} & \text{otherwise} \end{cases}$$

Solution. $T(n) = O(n \log_2 n)$.

Assorted proofs. We describe several ways to prove this recurrence. Initially we assume n is a power of 2 and replace \leq with =.

Merging

Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently?

- Linear number of comparisons.
- Use temporary array.

Challenge for the bored. In-place merge. [Kronrud, 1969]

to using only a constant amount of extra storage

Proof by Recursion Tree

n log₂n

Claim. If T(n) satisfies this recurrence, then $T(n) = n \log_2 n$.

assumes n is a power of 2

$$T(n) = \begin{cases} 0 & \text{if } n = 1\\ 2T(n/2) + n & \text{otherwise} \\ \text{sorting both halves} & \text{merging} \end{cases}$$

Pf. For n > 1:

$$\frac{T(n)}{n} = \frac{2T(n/2)}{n} + 1$$

$$= \frac{T(n/2)}{n/2} + 1$$

$$= \frac{T(n/4)}{n/4} + 1 + 1$$
...
$$= \frac{T(n/n)}{n/n} + \underbrace{1 + \dots + 1}_{\log_2 n}$$

$$= \log_2 n$$

Analysis of Mergesort Recurrence

Claim. If T(n) satisfies the following recurrence, then $T(n) \le n \lceil \lg n \rceil$.

$$T(n) \le \begin{cases} \underbrace{0}_{\text{solve left half}} + \underbrace{T(\lfloor n/2 \rfloor)}_{\text{solve right half}} + \underbrace{n}_{\text{merging}} & \text{otherwise} \end{cases}$$

Pf. (by induction on n)

- Base case: n = 1.
- Define $n_1 = \lfloor n/2 \rfloor$, $n_2 = \lceil n/2 \rceil$.
- Induction step: assume true for 1, 2, ..., n-1.

$$\begin{split} T(n) & \leq & T(n_1) + T(n_2) + n \\ & \leq & n_1 \Big\lceil \lg n_1 \Big\rceil + n_2 \Big\lceil \lg n_2 \Big\rceil + n \\ & \leq & n_1 \Big\lceil \lg n_2 \Big\rceil + n_2 \Big\lceil \lg n_2 \Big\rceil + n \\ & = & n \Big\lceil \lg n_2 \Big\rceil + n \\ & \leq & n(\left\lceil \lg n \right\rceil - 1) + n \\ & = & n \Big\lceil \lg n \Big\rceil \end{split}$$

$$n_{2} = \lceil n/2 \rceil$$

$$\leq \lceil 2^{\lceil \lg n \rceil} / 2 \rceil$$

$$= 2^{\lceil \lg n \rceil} / 2$$

$$\Rightarrow \lg n_{2} \leq \lceil \lg n \rceil - 1$$

11

log₂n

Claim. If T(n) satisfies this recurrence, then $T(n) = n \log_2 n$.

assumes n is a power of 2

$$T(n) = \begin{cases} 0 & \text{if } n = 1\\ \underbrace{2T(n/2)}_{\text{sorting both halves merging}} + \underbrace{n}_{\text{merging}} & \text{otherwise} \end{cases}$$

Pf. (by induction on n)

Base case: n = 1.

• Inductive hypothesis: $T(n) = n \log_2 n$.

• Goal: show that $T(2n) = 2n \log_2 (2n)$.

$$T(2n) = 2T(n) + 2n$$

$$= 2n\log_2 n + 2n$$

$$= 2n(\log_2(2n) - 1) + 2n$$

$$= 2n\log_2(2n)$$

5.3 Counting Inversions

Counting Inversions

Music site tries to match your song preferences with others.

• You rank n songs.

• Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.

■ My rank: 1, 2, ..., n.

■ Your rank: $a_1, a_2, ..., a_n$.

• Songs i and j inverted if i < j, but $a_i > a_j$.

	Songs				
	Α	В	С	D	Е
Me	1	2	3	4	5
You	1	3	4	2	5

Inversions 3-2, 4-2

13

Brute force: check all $\Theta(n^2)$ pairs i and j.

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

1 5 4 8 10 2 6 9 12 11 3 7

Applications

Applications.

- Voting theory.
- Collaborative filtering.
- Measuring the "sortedness" of an array.
- Sensitivity analysis of Google's ranking function.
- Rank aggregation for meta-searching on the Web.

Nonparametric statistics (e.g., Kendall's Tau distance).

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

• Divide: separate list into two pieces.

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

- Divide: separate list into two pieces.
- Conquer: recursively count inversions in each half.

Counting Inversions: Combine

Combine: count blue-green inversions

- Assume each half is sorted.
- $_{\mbox{\tiny L}}$ Count inversions where a_i and a_j are in different halves.
- Merge two sorted halves into sorted whole.

to maintain sorted invariant

13 blue-green inversions: 6 + 3 + 2 + 2 + 0 + 0

Count: O(n)

2 3 7 10 11 14 16 17 18 19 23 25

Merge: O(n)

$$T(n) \, \leq \, \, T\Big(\left\lfloor n/2\right\rfloor\Big) + T\Big(\left\lceil n/2\right\rceil\Big) + O(n) \ \ \, \Rightarrow \, \, \mathrm{T}(n) = O(n\log n)$$

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

- Divide: separate list into two pieces.
- Conquer: recursively count inversions in each half.
- Combine: count inversions where a_i and a_j are in different halves, and return sum of three quantities.

Counting Inversions: Implementation

Pre-condition. [Merge-and-Count] A and B are sorted. Post-condition. [Sort-and-Count] L is sorted.

```
Sort-and-Count(L) {
   if list L has one element
      return 0 and the list L

Divide the list into two halves A and B
   (r<sub>A</sub>, A) ← Sort-and-Count(A)
   (r<sub>B</sub>, B) ← Sort-and-Count(B)
   (r , L) ← Merge-and-Count(A, B)

return r = r<sub>A</sub> + r<sub>B</sub> + r and the sorted list L
}
```

5.4 Closest Pair of Points

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them.

Fundamental geometric primitive.

- Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.
- Special case of nearest neighbor, Euclidean MST, Voronoi.

fast closest pair inspired fast algorithms for these problems

Brute force. Check all pairs of points p and q with $\Theta(n^2)$ comparisons.

1-D version. O(n log n) easy if points are on a line.

Assumption. No two points have same x coordinate.

to make presentation cleaner

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

Obstacle. Impossible to ensure n/4 points in each piece.

Closest Pair of Points

Closest Pair of Points

Algorithm.

• Divide: draw vertical line L so that roughly $\frac{1}{2}$ n points on each side.

Closest Pair of Points

Algorithm.

- Divide: draw vertical line L so that roughly $\frac{1}{2}$ n points on each side.
- Conquer: find closest pair in each side recursively.
- Combine: find closest pair with one point in each side. \leftarrow seems like $\Theta(n^2)$
- Return best of 3 solutions.

Algorithm.

- Divide: draw vertical line L so that roughly $\frac{1}{2}$ n points on each side.
- Conquer: find closest pair in each side recursively.

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance $< \delta$.

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance $\langle \delta \rangle$.

 \blacksquare Observation: only need to consider points within δ of line L.

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance $\langle \delta \rangle$.

- \blacksquare Observation: only need to consider points within δ of line L.
- Sort points in 2δ -strip by their y coordinate.
- Only check distances of those within 11 positions in sorted list!

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance $\langle \delta \rangle$.

- Observation: only need to consider points within δ of line L.
- Sort points in 2δ -strip by their y coordinate.

Closest Pair of Points

Def. Let s_i be the point in the 2δ -strip, with the i^{th} smallest y-coordinate.

Claim. If $|i - j| \ge 12$, then the distance between s_i and s_j is at least δ .

- \blacksquare No two points lie in same $\frac{1}{2}\delta$ -by- $\frac{1}{2}\delta$ box.
- Two points at least 2 rows apart have distance $\geq 2(\frac{1}{2}\delta)$. •

Fact. Still true if we replace 12 with 7.

Closest Pair Algorithm

```
Closest-Pair (p_1, ..., p_n) {
   Compute separation line L such that half the points
                                                                      O(n log n)
   are on one side and half on the other side.
   \delta_1 = Closest-Pair(left half)
                                                                      2T(n / 2)
   \delta_2 = Closest-Pair(right half)
   \delta = \min(\delta_1, \delta_2)
   Delete all points further than \delta from separation line L
                                                                      O(n)
                                                                      O(n log n)
   Sort remaining points by y-coordinate.
   Scan points in y-order and compare distance between
                                                                      O(n)
   each point and next 11 neighbors. If any of these
   distances is less than \delta, update \delta.
   return δ.
}
```

Closest Pair of Points: Analysis

Running time.

$$T(n) \le 2T(n/2) + O(n \log n) \Rightarrow T(n) = O(n \log^2 n)$$

Q. Can we achieve O(n log n)?

A. Yes. Don't sort points in strip from scratch each time.

■ Each recursive returns two lists: all points sorted by y coordinate, and all points sorted by x coordinate.

Sort by merging two pre-sorted lists.

$$T(n) \le 2T(n/2) + O(n) \implies T(n) = O(n \log n)$$