

Lecture slides by Kevin Wayne

LINEAR PROGRAMMING

- a refreshing example
- standard form
- fundamental questions
- geometry
- Iinear algebra
- simplex algorithm

Linear programming. Optimize a linear function subject to linear inequalities.

(P) max
$$\sum_{j=1}^{n} c_j x_j$$

s.t.
$$\sum_{j=1}^{n} a_{ij} x_j = b_i \quad 1 \le i \le m$$
$$x_j \ge 0 \quad 1 \le j \le n$$

(P) max
$$c^T x$$

s.t. $Ax = b$
 $x \ge 0$

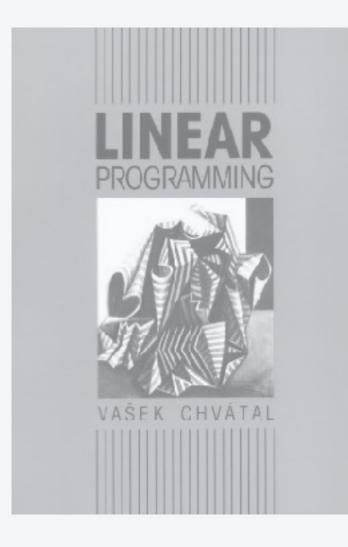
Linear programming. Optimize a linear function subject to linear inequalities.

Generalizes: Ax = b, 2-person zero-sum games, shortest path, max flow, assignment problem, matching, multicommodity flow, MST, min weighted arborescence, ...

Why significant?

- Design poly-time algorithms.
- Design approximation algorithms.
- Solve NP-hard problems using branch-and-cut.

Ranked among most important scientific advances of 20th century.



LINEAR PROGRAMMING

• a refreshing example

- standard form
- fundamental questions
- geometry
- Inear algebra
- simplex algorithm

Brewery problem

Small brewery produces ale and beer.

- Production limited by scarce resources: corn, hops, barley malt.
- Recipes for ale and beer require different proportions of resources.

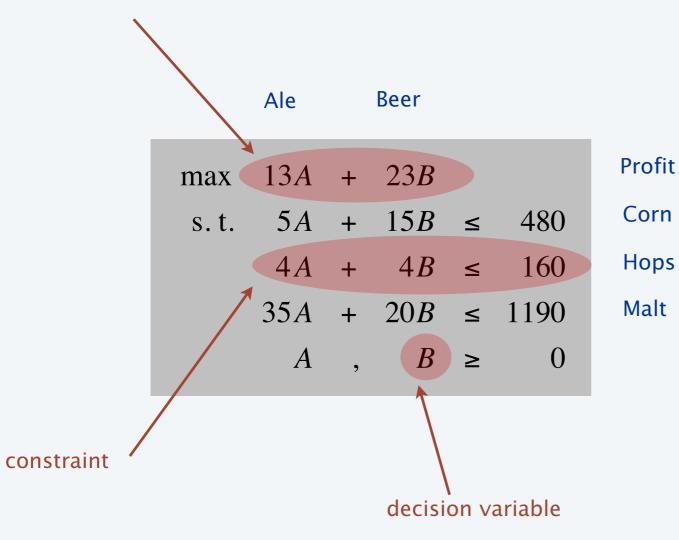
Beverage	Corn (pounds)	Hops (ounces)	Malt (pounds)	Profit (\$)
Ale (barrel)	5	4	35	13
Beer (barrel)	15	4	20	23
constraint	480	160	1190	

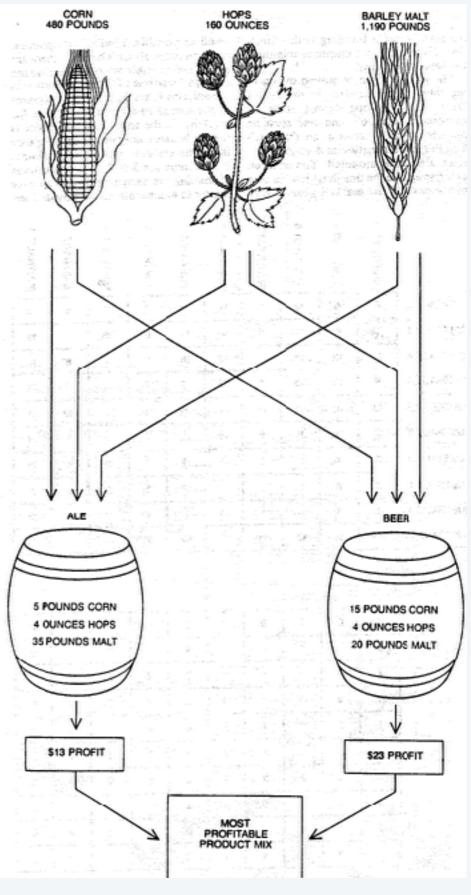
How can brewer maximize profits?

- Devote all resources to ale: 34 barrels of ale \Rightarrow \$442
- Devote all resources to beer: 32 barrels of beer \Rightarrow \$736
- 7.5 barrels of ale, 29.5 barrels of beer \Rightarrow \$776
- 12 barrels of ale, 28 barrels of beer

⇒ \$800

Brewery problem



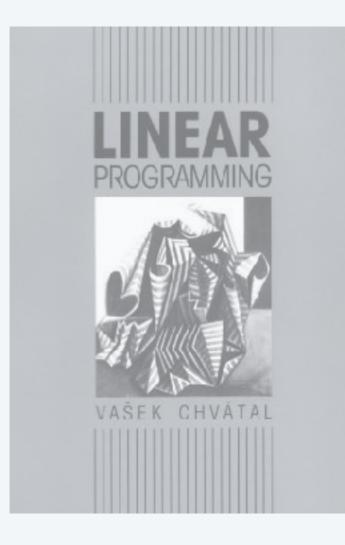


SCIENTIFIC AMERICAN JUNE 1981

The Allocation of Resources by Linear Programming

Abstract, crystal-like structures in many geometrical dimensions can help to solve problems in planning and management. A new algorithm has set upper limits on the complexity of such problems

By Robert G. Bland



LINEAR PROGRAMMING

- ▶ a refreshing example
- standard form
- fundamental questions
- geometry
- Inear algebra
- simplex algorithm

Standard form of a linear program

"Standard form" of an LP.

- Input: real numbers a_{ij}, c_j, b_i .
- Output: real numbers x_j .
- n = # decision variables, m = # constraints.
- Maximize linear objective function subject to linear inequalities.

(P) max
$$\sum_{j=1}^{n} c_j x_j$$

s.t.
$$\sum_{j=1}^{n} a_{ij} x_j = b_i \quad 1 \le i \le m$$
$$x_j \ge 0 \quad 1 \le j \le n$$

(P) max
$$c^T x$$

s.t. $Ax = b$
 $x \ge 0$

Linear. No x^2 , xy, $\arccos(x)$, etc.

Programming. Planning (term predates computer programming).

Brewery problem: converting to standard form

Original input.

max	13A	+	23 <i>B</i>		
s. t.	5 <i>A</i>	+	15 <i>B</i>	≤	480
	4A	+	4 <i>B</i>	≤	160
	35A	+	20 <i>B</i>	≤	1190
	A	,	В	≥	0

Standard form.

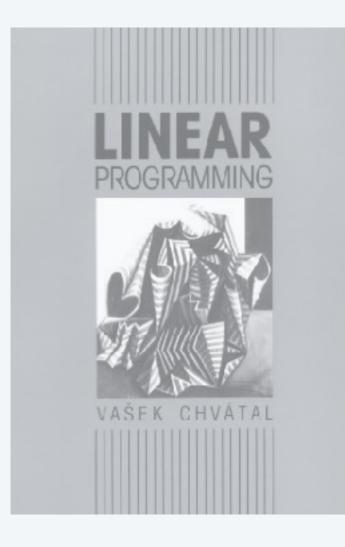
- Add slack variable for each inequality.
- Now a 5-dimensional problem.

Easy to convert variants to standard form.

(P) max
$$c^T x$$

s.t. $Ax = b$
 $x \ge 0$

Less than to equality. $x + 2y - 3z \le 17 \implies x + 2y - 3z + s = 17, s \ge 0$ Greater than to equality. $x + 2y - 3z \ge 17 \implies x + 2y - 3z - s = 17, s \ge 0$ Min to max. min $x + 2y - 3z \implies max -x - 2y + 3z$ Unrestricted to nonnegative. x unrestricted $\implies x = x^+ - x^-, x^+ \ge 0, x^- \ge 0$



LINEAR PROGRAMMING I

- a refreshing examplestandard form
- fundamental questions
- ▶ geometry
- Inear algebra
- simplex algorithm

Fundamental questions

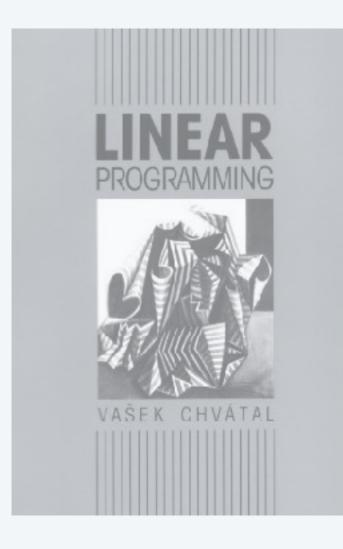
LP. For $A \in \Re^{m \times n}$, $b \in \Re^{m}$, $c \in \Re^{n}$, $\alpha \in \Re$, does there exist $x \in \Re^{n}$ such that: $Ax = b, x \ge 0, c^{T}x \ge \alpha$?

Q. Is LP in NP?
Q. Is LP in co-NP?
Q. Is LP in P?
Q. Is LP in P?
Q. Is LP in P_n?

Blum-Shub-Smale model

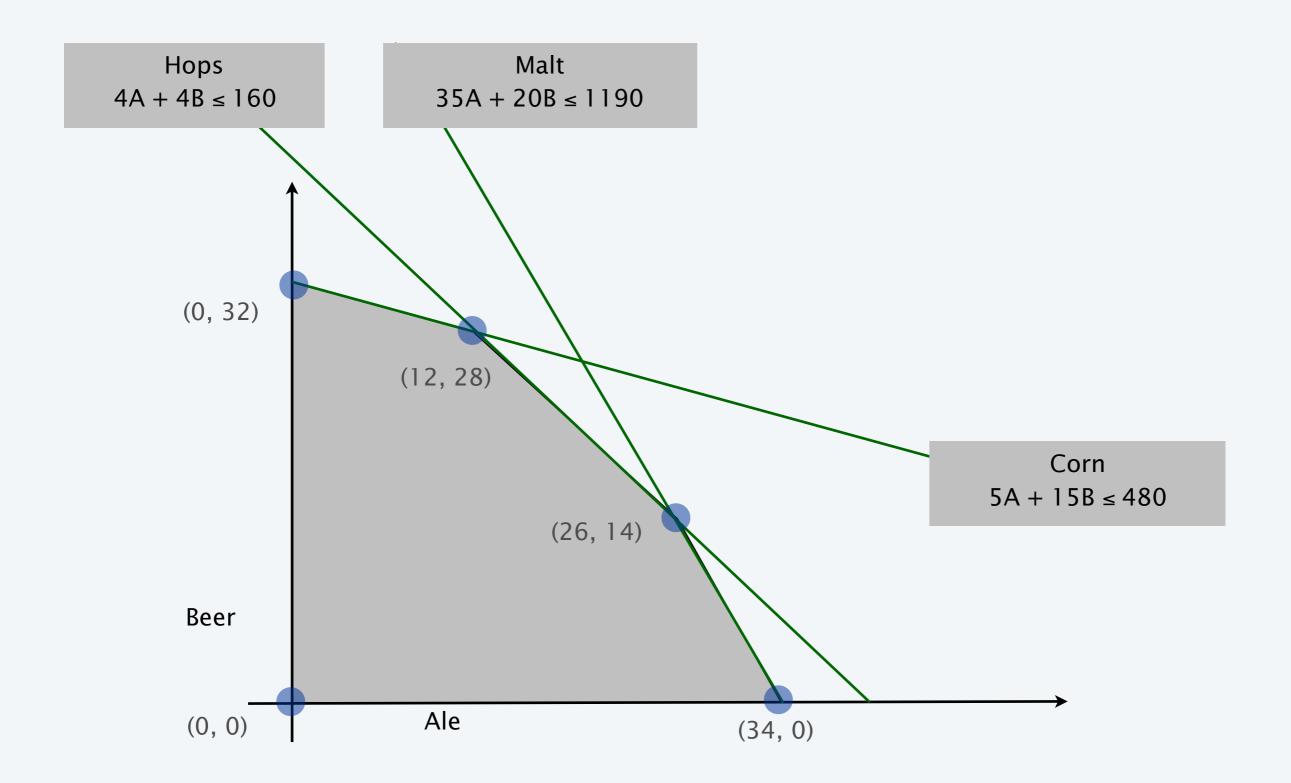
Input size.

- *n* = number of variables.
- *m* = number of constraints.
- L = number of bits to encode input.

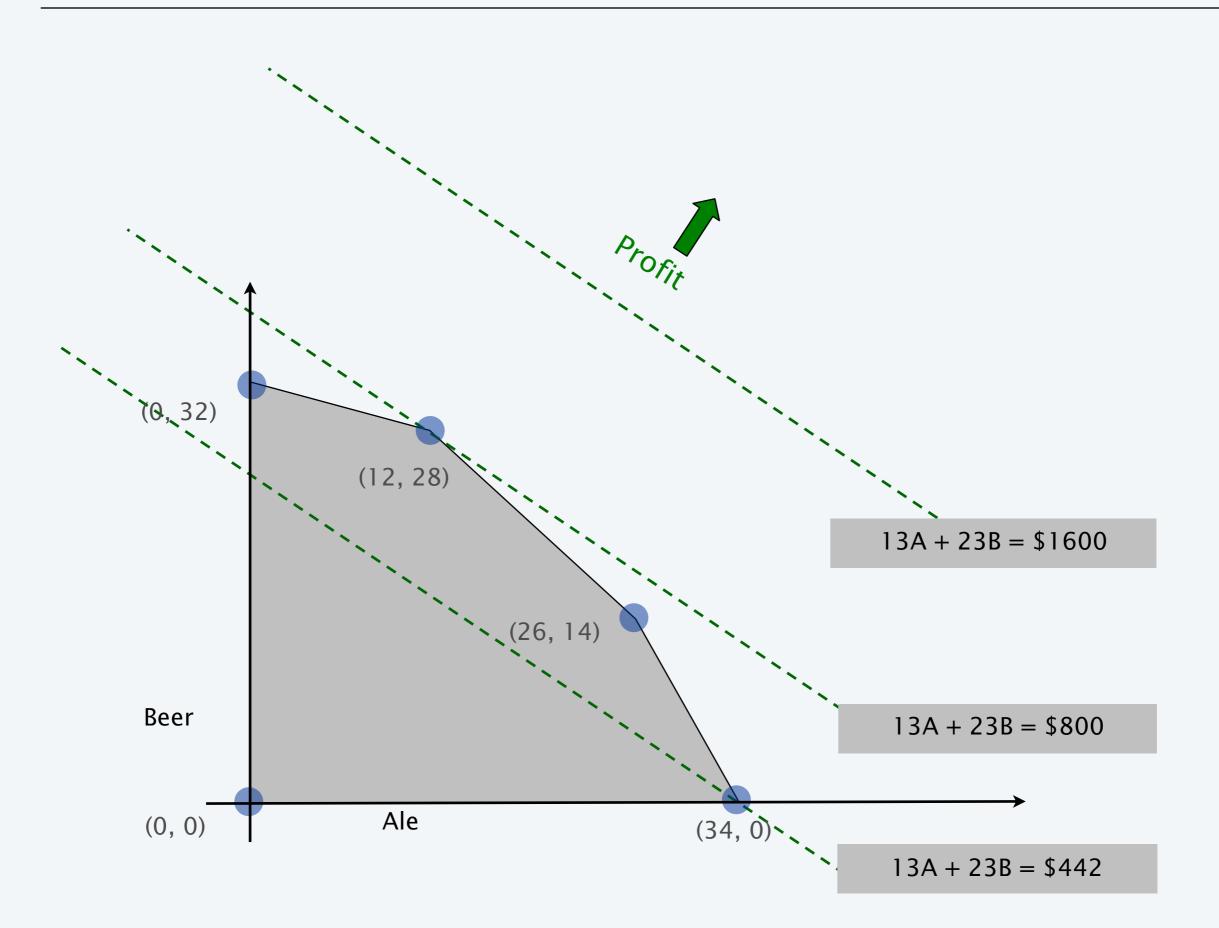


LINEAR PROGRAMMING

- a refreshing example
- standard form
- fundamental questions
- geometry
- linear algebrasimplex algorithm

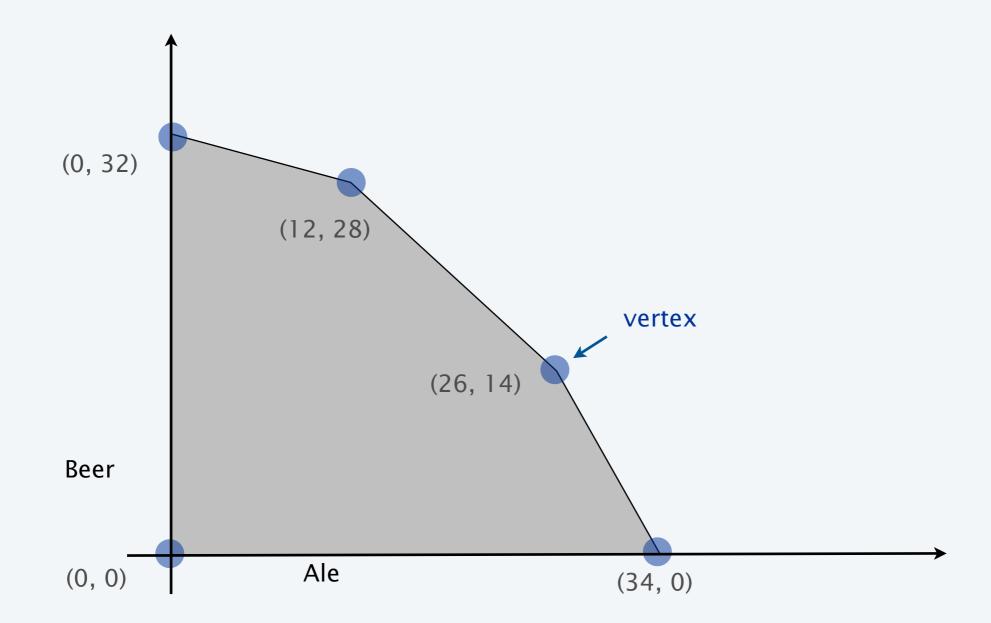


Brewery problem: objective function

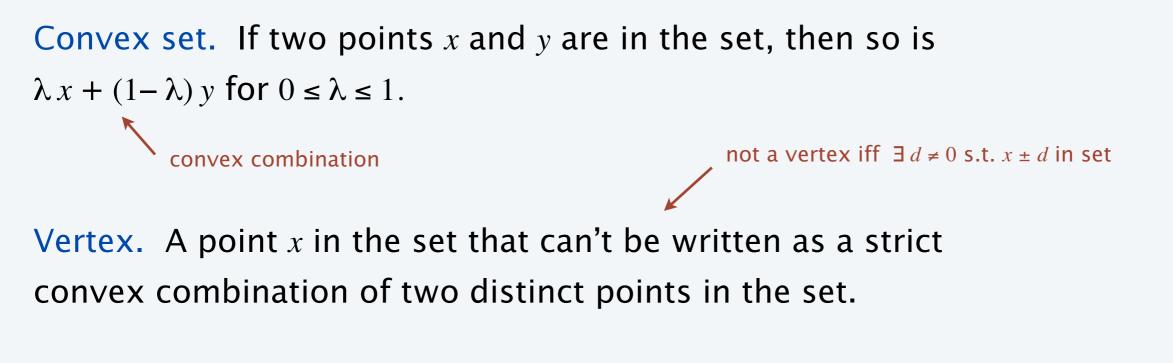


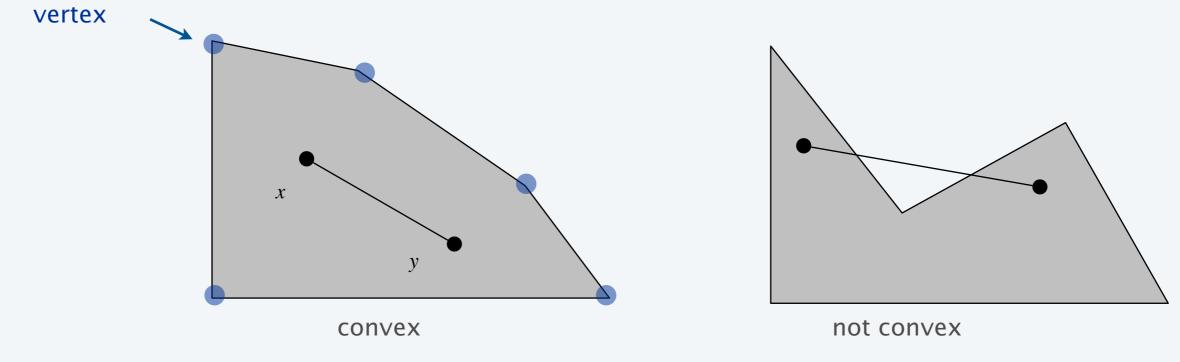
Brewery problem: geometry

Brewery problem observation. Regardless of objective function coefficients, an optimal solution occurs at a vertex.



Convexity



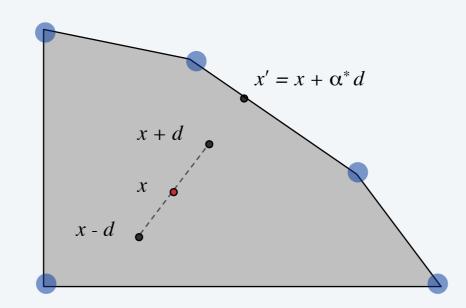


Observation. LP feasible region is a convex set.

Theorem. If there exists an optimal solution to (P), then there exists one that is a vertex.

(P) max $c^T x$ s.t. Ax = b $x \ge 0$

Intuition. If *x* is not a vertex, move in a non-decreasing direction until you reach a boundary. Repeat.



Purificaiton

Theorem. If there exists an optimal solution to (P), then there exists one that is a vertex.

Pf.

- Suppose *x* is an optimal solution that is not a vertex.
- There exist direction $d \neq 0$ such that $x \pm d \in P$.
- A d = 0 because $A(x \pm d) = b$.
- Assume $c^T d \le 0$ (by taking either d or -d).
- Consider $x + \lambda d$, $\lambda > 0$:

Case 1. [there exists *j* such that $d_j < 0$]

- Increase λ to λ^* until first new component of $x + \lambda d$ hits 0.
- $x + \lambda^* d$ is feasible since $A(x + \lambda^* d) = Ax = b$ and $x + \lambda^* y \ge 0$.
- $x + \lambda^* d$ has one more zero component than x.
- $c^{\mathrm{T}}x' = c^{\mathrm{T}}(x + \lambda^* d) = c^{\mathrm{T}}x + \lambda^* c^{\mathrm{T}}d \leq c^{\mathrm{T}}x.$

 $d_k = 0$ whenever $x_k = 0$ because $x \pm d \in P$

Purificaiton

Theorem. If there exists an optimal solution to (P), then there exists one that is a vertex.

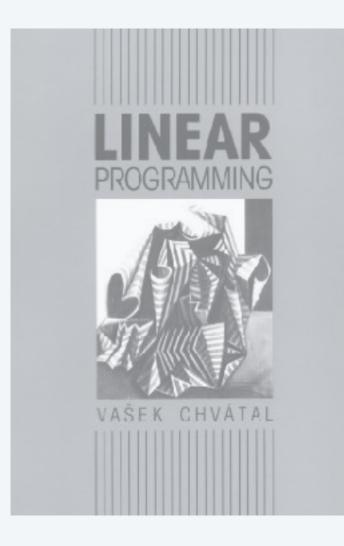
Pf.

- Suppose *x* is an optimal solution that is not a vertex.
- There exist direction $d \neq 0$ such that $x \pm d \in P$.
- A d = 0 because $A(x \pm d) = b$.
- Assume $c^T d \le 0$ (by taking either *d* or -d).
- Consider $x + \lambda d$, $\lambda > 0$:

Case 2. $[d_j \ge 0 \text{ for all } j]$

- $x + \lambda d$ is feasible for all $\lambda \ge 0$ since $A(x + \lambda d) = b$ and $x + \lambda d \ge x \ge 0$.
- As $\lambda \to \infty$, $c^{T}(x + \lambda d) \to \infty$ because $c^{T} d < 0$.

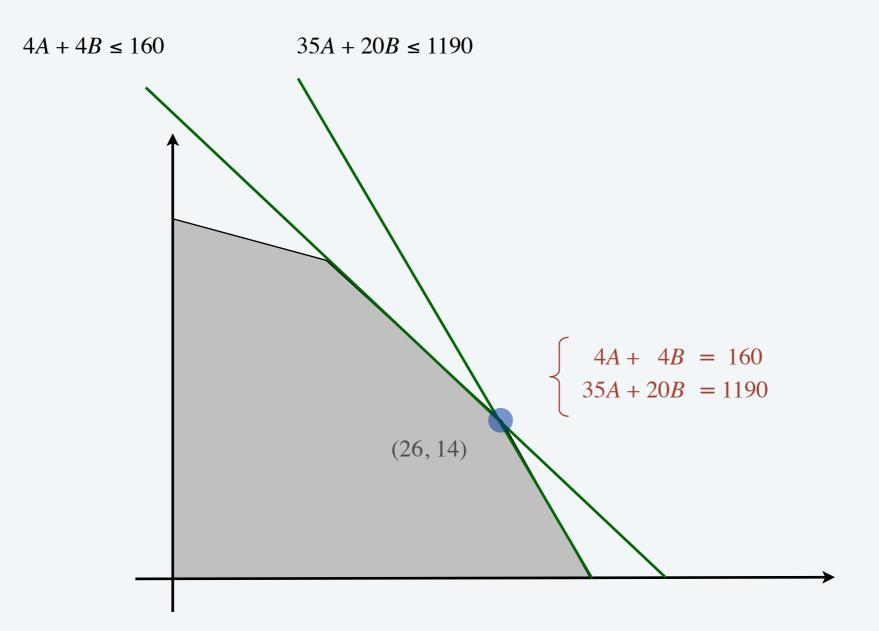
if $c^{T}d = 0$, choose d so that case 1 applies



LINEAR PROGRAMMING I

- a refreshing example
- standard form
- fundamental questions
- geometry
- Iinear algebra
- simplex algorithm

Intuition. A vertex in \Re^m is uniquely specified by *m* linearly independent equations.



Theorem. Let $P = \{x : Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j : x_j > 0\}$. Then, x is a vertex iff A_B has linearly independent columns.

Notation. Let B = set of column indices. Define A_B to be the subset of columns of A indexed by B.

$$A = \begin{bmatrix} 2 & 1 & 3 & 0 \\ 7 & 3 & 2 & 1 \\ 0 & 0 & 0 & 5 \end{bmatrix}, \quad b = \begin{bmatrix} 7 \\ 16 \\ 0 \end{bmatrix}$$

Ex.

$$x = \begin{bmatrix} 2 \\ 0 \\ 1 \\ 0 \end{bmatrix}, B = \{1, 3\}, A_B = \begin{bmatrix} 2 & 3 \\ 7 & 2 \\ 0 & 0 \end{bmatrix}$$

Theorem. Let $P = \{x : Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j : x_j > 0\}$.

Then, x is a vertex iff A_B has linearly independent columns.

Pf. ←

- Assume *x* is not a vertex.
- There exist direction $d \neq 0$ such that $x \pm d \in P$.
- A d = 0 because $A(x \pm d) = b$.
- Define $B' = \{ j : d_j \neq 0 \}.$
- $A_{B'}$ has linearly dependent columns since $d \neq 0$.
- Moreover, $d_j = 0$ whenever $x_j = 0$ because $x \pm d \ge 0$.
- Thus $B' \subseteq B$, so $A_{B'}$ is a submatrix of A_B .
- Therefore, A_B has linearly dependent columns.

Theorem. Let $P = \{x : Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j : x_j > 0\}$. Then, x is a vertex iff A_B has linearly independent columns.

Pf. \Rightarrow

- Assume A_B has linearly dependent columns.
- There exist $d \neq 0$ such that $A_B d = 0$.
- Extend d to \Re^n by adding 0 components.
- Now, A d = 0 and $d_j = 0$ whenever $x_j = 0$.
- For sufficiently small λ , $x \pm \lambda d \in P \Rightarrow x$ is not a vertex.

Theorem. Given $P = \{x : Ax = b, x \ge 0\}$, *x* is a vertex iff there exists $B \subseteq \{1, ..., n\}$ such |B| = m and:

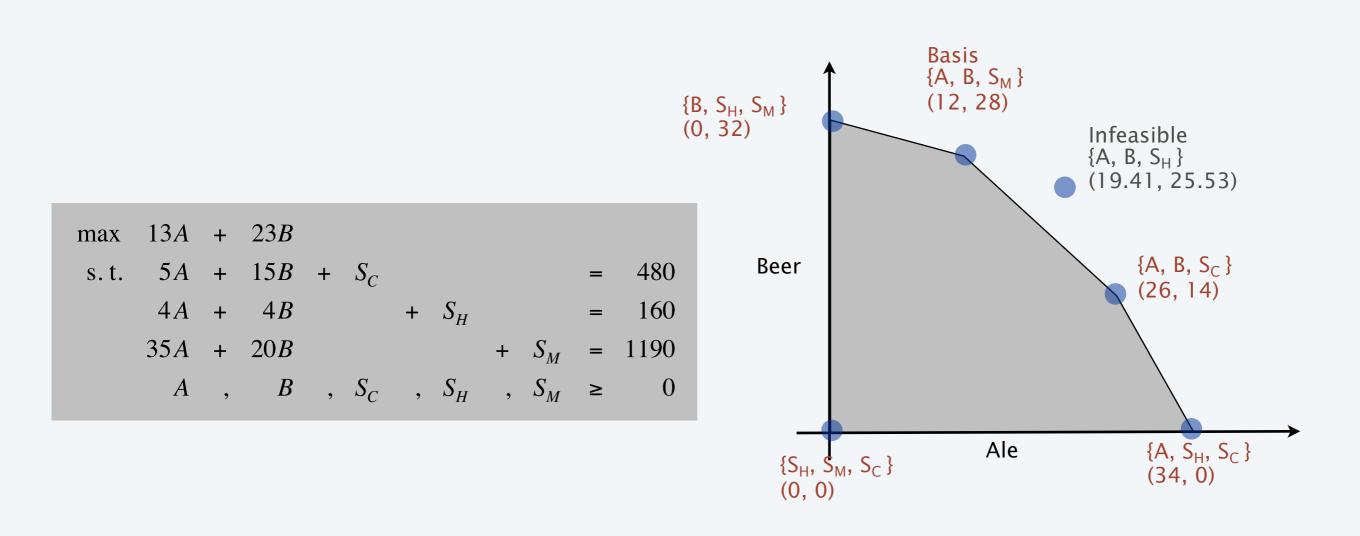
- A_B is nonsingular.
- $x_B = A_B^{-1} b \ge 0.$
- $x_N = 0$.

basic feasible solution

Pf. Augment A_B with linearly independent columns (if needed).

$$A = \begin{bmatrix} 2 & 1 & 3 & 0 \\ 7 & 3 & 2 & 1 \\ 0 & 0 & 0 & 5 \end{bmatrix}, \quad b = \begin{bmatrix} 7 \\ 16 \\ 0 \end{bmatrix}$$
$$x = \begin{bmatrix} 2 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \quad B = \{1, 3, 4\}, \quad A_B = \begin{bmatrix} 2 & 3 & 0 \\ 7 & 2 & 1 \\ 0 & 0 & 5 \end{bmatrix}$$

Assumption. $A \in \Re^{m \times n}$ has full row rank.



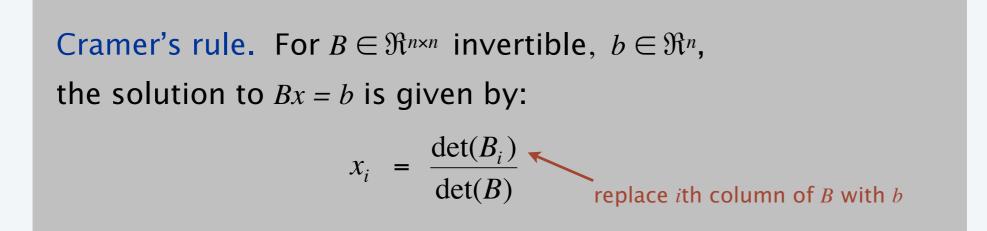
Fundamental questions

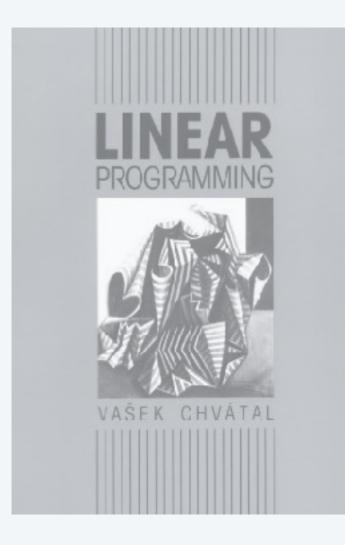
LP. For $A \in \Re^{m \times n}$, $b \in \Re^m$, $c \in \Re^n$, $\alpha \in \Re$, does there exist $x \in \Re^n$ such that: Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Q. Is LP in NP?

A. Yes.

- Number of vertices $\leq C(n, m) = {n \choose m} \leq n^m$.
- Cramer's rule \Rightarrow can check a vertex in poly-time.

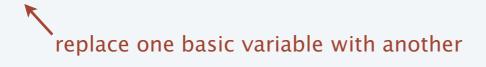


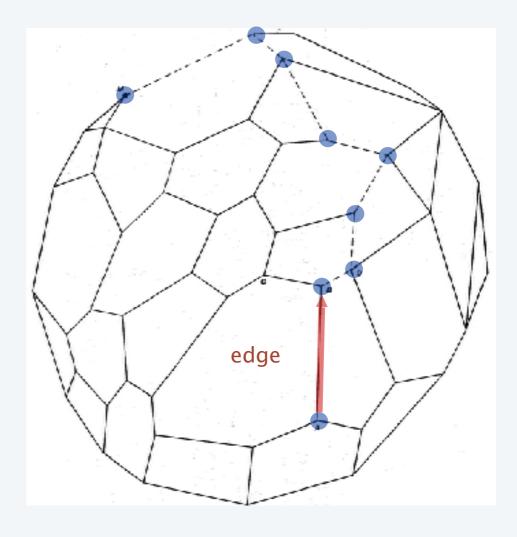


LINEAR PROGRAMMING I

- a refreshing example
- standard form
- fundamental questions
- ▶ geometry
- Inear algebra
- simplex algorithm

Simplex algorithm. [George Dantzig 1947] Move from BFS to adjacent BFS, without decreasing objective function.





Greedy property. BFS optimal iff no adjacent BFS is better. Challenge. Number of BFS can be exponential!

Simplex algorithm: initialization

max 2	Z su	bject to	0								
13A	+	23 <i>B</i>						-	Ζ	=	0
5 <i>A</i>	+	15 <i>B</i>	+	S_C						=	480
4A	+	4 <i>B</i>			+	S_H				=	160
35A	+	20 <i>B</i>					+	S_M		=	1190
A	,	В	,	S_C	,	S_H	,	S_M		≥	0

Basis =
$$\{S_C, S_H, S_M\}$$

 $A = B = 0$
 $Z = 0$
 $S_C = 480$
 $S_H = 160$
 $S_M = 1190$

Simplex algorithm: pivot 1

max Z	su	bject to)								
13A	+	23 <i>B</i>						_	Ζ	=	0
5 <i>A</i>	+	15 <i>B</i>	+	S_C						=	480
4A	+	4 <i>B</i>			+	S_H				=	160
35A	+	20 <i>B</i>					+	S_M		=	1190
A	,	В	,	S_C	,	S_H	,	S_M		≥	0

Basis =
$$\{S_C, S_H, S_M\}$$

 $A = B = 0$
 $Z = 0$
 $S_C = 480$
 $S_H = 160$
 $S_M = 1190$

Substitute: $B = 1/15 (480 - 5A - S_C)$

$\max Z$	subjec	et to							
$\frac{16}{3} A$		_	$\frac{23}{15} S_C$			_	Z	=	-736
$\frac{1}{3} A$	+ <i>B</i>	+	$\frac{1}{15} S_C$					=	32
$\frac{8}{3}$ A		_	$\frac{4}{15} S_C$	+	S_H			=	32
$\frac{85}{3}A$		_	$\frac{4}{3}$ S_C			+ S_M		=	550
A	, <i>B</i>	,	S_C	,	S_H	, S_M		≥	0

Basis =
$$\{B, S_H, S_M\}$$

 $A = S_C = 0$
 $Z = 736$
 $B = 32$
 $S_H = 32$
 $S_M = 550$

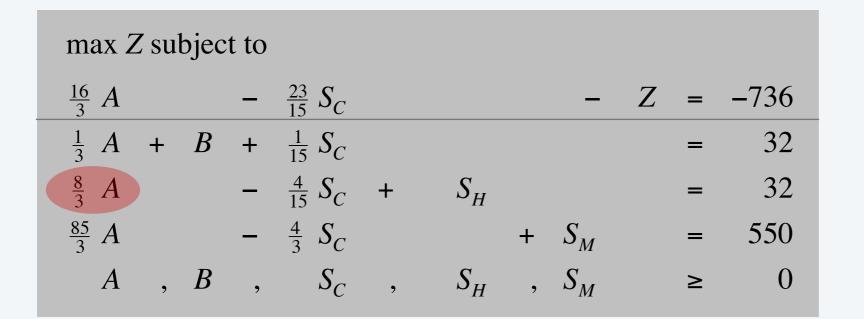
Simplex algorithm: pivot 1

ma	ax Z subject to				
13	A + 23B		-	Z = 0	Basis = { S_C, S_H, S_M }
5	A + 15B	+ <i>S_C</i>		= 480	A = B = 0 $Z = 0$
4	A + 4B	+ S_H		= 160	$S_C = 480$
35	A + 20B		+ S_M	= 1190	$S_H = 160$ $S_M = 1190$
	A , B	, S_C , S_H	, S_M	≥ 0	$S_M - 1170$

- Q. Why pivot on column 2 (or 1)?
- A. Each unit increase in *B* increases objective value by \$23.
- Q. Why pivot on row 2?
- A. Preserves feasibility by ensuring RHS ≥ 0 .

min ratio rule: min { 480/15, 160/4, 1190/20 }

Simplex algorithm: pivot 2



Basis =
$$\{B, S_H, S_M\}$$

 $A = S_C = 0$
 $Z = 736$
 $B = 32$
 $S_H = 32$
 $S_M = 550$

Substitute: $A = 3/8 (32 + 4/15 S_C - S_H)$

Basis =
$$\{A, B, S_M\}$$

 $S_C = S_H = 0$
 $Z = 800$
 $B = 28$
 $A = 12$
 $S_M = 110$

Simplex algorithm: optimality

- Q. When to stop pivoting?
- A. When all coefficients in top row are nonpositive.
- Q. Why is resulting solution optimal?
- A. Any feasible solution satisfies system of equations in tableaux.
 - In particular: $Z = 800 S_C 2 S_H$, $S_C \ge 0$, $S_H \ge 0$.
 - Thus, optimal objective value $Z^* \leq 800$.
 - Current BFS has value $800 \Rightarrow$ optimal.

max Z subject to										
	_	S_C	_	$2 S_H$		-	Ζ	=	-800	
В	+	$\frac{1}{10} S_C$	+	$\frac{1}{8}$ S_H				=	28	
A	-	$\frac{1}{10} S_C$	+	$\frac{3}{8}$ S_H				=	12	
	-	$\frac{25}{6} S_C$	-	$\frac{85}{8} S_H$	+	S_M		=	110	
A , B	,	S_C	,	S_H	,	S_M		≥	0	

Basis =
$$\{A, B, S_M\}$$

 $S_C = S_H = 0$
 $Z = 800$
 $B = 28$
 $A = 12$
 $S_M = 110$

Initial simplex tableaux.

$$c_B^T x_B + c_N^T x_N = Z$$

$$A_B x_B + A_N x_N = b$$

$$x_B , \quad x_N \ge 0$$

Simplex tableaux corresponding to basis *B*.

$$(c_N^T - c_B^T A_B^{-1} A_N) x_N = Z - c_B^T A_B^{-1} b \quad \text{subtract } c_B^T A_B^{-1} \text{ times constraints}$$

$$I x_B + A_B^{-1} A_N x_N = A_B^{-1} b \quad \text{multiply by } A_B^{-1}$$

$$x_B , \qquad x_N \geq 0$$

$$x_{B} = A_{B}^{-1}b \ge 0$$

$$x_{N} = 0$$

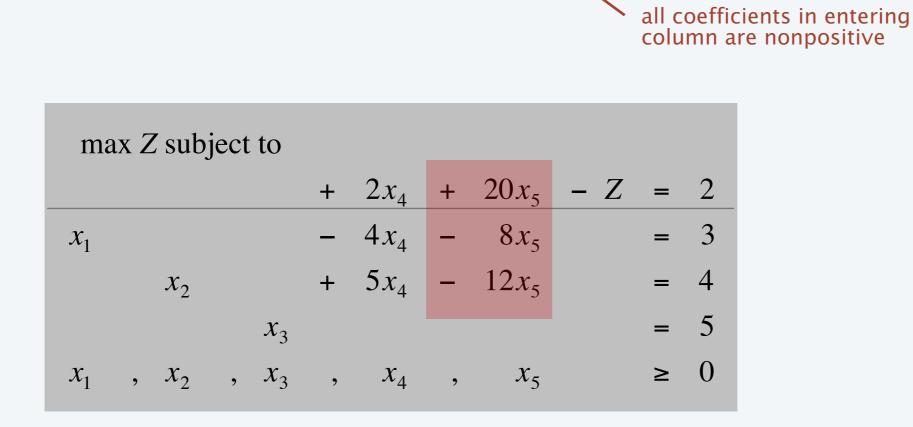
$$c_{N}^{T} - c_{B}^{T}A_{B}^{-1}A_{N} \le 0$$
basic feasible solution
optimal basis

Simplex algorithm. Missing details for corner cases.

- Q. What if min ratio test fails?
- Q. How to find initial basis?
- Q. How to guarantee termination?

Unboundedness

Q. What happens if min ratio test fails?



A. Unbounded objective function.

$$Z = 2 + 20x_5 \qquad \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 3 + 8x_5 \\ 4 + 12x_5 \\ 5 \\ 0 \end{bmatrix}$$

 $\begin{bmatrix} x_5 \end{bmatrix}$

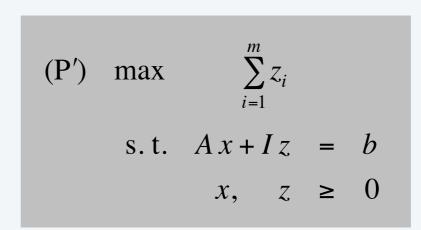
0



(P) max
$$c^T x$$

s.t. $Ax = b$
 $x \ge 0$

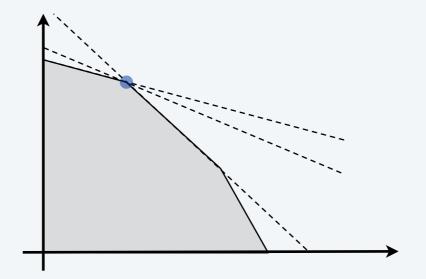
A. Solve (P'), starting from basis consisting of all the z_i variables.



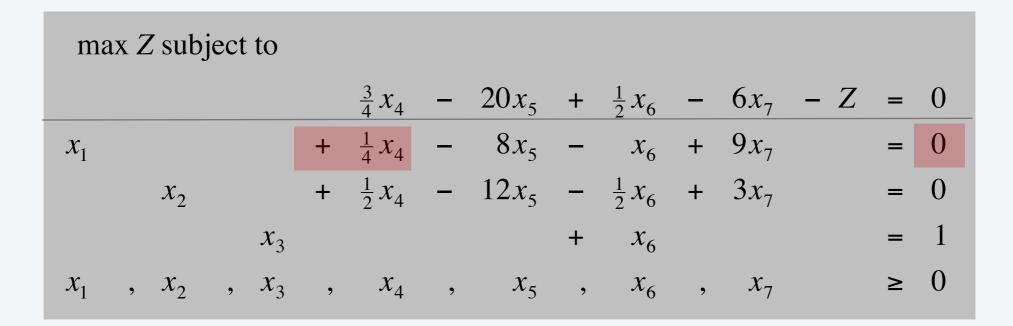
- Case 1: $\min > 0 \Rightarrow$ (P) is infeasible.
- Case 2: min = 0, basis has no z_i variables \Rightarrow okay to start Phase II.
- Case 3a: min = 0, basis has z_i variables. Pivot z_i variables out of basis. If successful, start Phase II; else remove linear dependent rows.

Simplex algorithm: degeneracy

Degeneracy. New basis, same vertex.

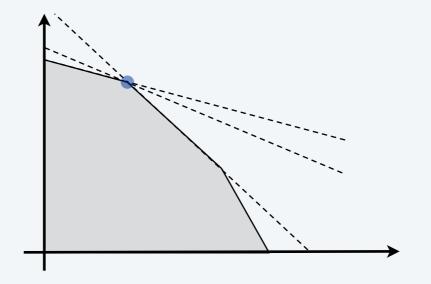


Degenerate pivot. Min ratio = 0.



Simplex algorithm: degeneracy

Degeneracy. New basis, same vertex.



Cycling. Infinite loop by cycling through different bases that all correspond to same vertex.

Anti-cycling rules.

- Bland's rule: choose eligible variable with smallest index.
- Random rule: choose eligible variable uniformly at random.
- Lexicographic rule: perturb constraints so nondegenerate.

Intuition. No degeneracy \Rightarrow no cycling.

Perturbed problem.

(P') max $c^T x$ s.t. $Ax = b + \varepsilon$ where $\varepsilon = \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix}$, such that $\varepsilon_1 \succ \varepsilon_2 \succ \cdots \succ \varepsilon_n$

Lexicographic rule. Apply perturbation virtually by manipulating ϵ symbolically:

$$17 + 5\varepsilon_1 + 11\varepsilon_2 + 8\varepsilon_3 \leq 17 + 5\varepsilon_1 + 14\varepsilon_2 + 3\varepsilon_3$$

Intuition. No degeneracy \Rightarrow no cycling.

Perturbed problem.

(P') max $c^T x$ s.t. $Ax = b + \varepsilon$ where $\varepsilon = \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon \end{bmatrix}$, such that $\varepsilon_1 \succ \varepsilon_2 \succ \cdots \succ \varepsilon_n$

Claim. In perturbed problem, $x_B = A_B^{-1}(b + \varepsilon)$ is always nonzero. Pf. The *j*th component of x_B is a (nonzero) linear combination of the components of $b + \varepsilon \Rightarrow$ contains at least one of the ε_i terms.

Corollary. No cycling.

which can't cancel

Simplex algorithm: practice

Remarkable property. In practice, simplex algorithm typically terminates after at most 2(m + n) pivots.

but no polynomial pivot rule known

Issues.

- Avoid stalling.
- Choose the pivot.
- Maintain sparsity.
- Ensure numerical stability.
- Preprocess to eliminate variables and constraints.

Commercial solvers can solve LPs with millions of variables and tens of thousands of constraints.