

## Linear programming

## Linear programming

Linear programming. Optimize a linear function subject to linear inequalities.

Generalizes: $A x=b, 2$-person zero-sum games, shortest path, max flow, assignment problem, matching, multicommodity flow, MST, min weighted arborescence, ..

Why significant?

- Design poly-time algorithms.
- Design approximation algorithms
- Solve NP-hard problems using branch-and-cut.


## Linear Programming I

- a refreshing example
b standard form
- fundamental questions
- geometry
- linear algebra
- simplex algorithm

Linear programming. Optimize a linear function subject to linear inequalities.

$$
\text { (P) } \begin{array}{rll}
\max & \sum_{j=1}^{n} c_{j} x_{j} \\
\text { s.t. } & \sum_{j=1}^{n} a_{i j} x_{j} & =b_{i} \quad 1 \leq i \leq m \\
x_{j} & \geq 0 \quad 1 \leq j \leq n
\end{array}
$$

(P) $\max c^{T} x$
s. t. $A x=b$
$x \geq 0$

## Brewery problem

Small brewery produces ale and beer.

- Production limited by scarce resources: corn, hops, barley malt.
- Recipes for ale and beer require different proportions of resources.

| Beverage | Corn <br> (pounds) | Hops <br> (ounces) | Malt <br> (pounds) | Profit <br> (\$) |
| :---: | :---: | :---: | :---: | :---: |
| Ale (barrel) | 5 | 4 | 35 | 13 |
| Beer (barrel) | 15 | 4 | 20 | 23 |
| constraint | 480 | 160 | 1190 |  |

How can brewer maximize profits?

- Devote all resources to ale: 34 barrels of ale $\quad \Rightarrow$ \$442
- Devote all resources to beer: 32 barrels of beer
$\Rightarrow \$ 736$
- 7.5 barrels of ale, 29.5 barrels of beer
$\Rightarrow \$ 776$
- 12 barrels of ale, 28 barrels of beer


## Brewery problem



## Reference

## The Allocation of Resources by Linear Programming

Abstract, crystal-like structures in many geometrical dimensions can help to solve problems in planning and management. A new algorithm has set upper limits on the complexity of such problems


## Linear Programming I

## - a refreshing example

- standard form
, fundamental questions
- geometry
- linear algebra
- simplex algorithm


## Standard form of a linear program

"Standard form" of an LP.

- Input: real numbers $a_{i j}, c_{j}, b_{i}$.
- Output: real numbers $x_{j}$.
- $n=$ \# decision variables, $m=$ \# constraints.
- Maximize linear objective function subject to linear inequalities.

```
(P) max }\mp@subsup{\sum}{j=1}{n}\mp@subsup{c}{j}{}\mp@subsup{x}{j}{
s. t. \(\sum_{j=1}^{n} a_{i j} x_{j}=b_{i} \quad 1 \leq i \leq m\)
\[
x_{j} \geq 0 \quad 1 \leq j \leq n
\]
```

(P) $\max c^{T} x$ s.t. $A x=b$
$x \geq 0$

## Brewery problem: converting to standard form

## Original input.

```
max 13A + 23B
s.t. 5A + 15B\leq480
    4A+4B\leq160
    35A+20B\leq1190
```


## Standard form.

- Add slack variable for each inequality.
- Now a 5-dimensional problem.

```
max 13A + 23B
```



## Equivalent forms

Easy to convert variants to standard form.

```
(P) max }\mp@subsup{c}{}{T}
    s.t. }Ax=
x}\geq
```

Less than to equality. $x+2 y-3 z \leq 17 \Rightarrow x+2 y-3 z+s=17, s \geq 0$
Greater than to equality. $x+2 y-3 z \geq 17 \Rightarrow x+2 y-3 z-s=17, s \geq 0$
Min to max. $\min x+2 y-3 z \Rightarrow \max -x-2 y+3 z$
Unrestricted to nonnegative. $x$ unrestricted $\Rightarrow x=x^{+}-x^{-}, x^{+} \geq 0, x-\geq 0$


## Linear Programming I

```
* a refreshing example
```

, standard form

## - fundamental questions

- geometry
- linear algebra
- simplex algorithm


## Fundamental questions

LP. For $A \in \Re^{m \times n}, b \in \Re^{m}, c \in \mathfrak{R}^{n}, \alpha \in \mathfrak{R}$, does there exist $x \in \Re^{n}$ such that: $A x=b, x \geq 0, c^{\mathrm{T}} x \geq \alpha$ ?
Q. Is LP in NP?
Q. Is LP in co-NP?
Q. Is LP in $\mathbf{P}$ ?
Q. Is $L P$ in $P_{\Re}$ ?

Blum-Shub-Smale model

## Linear Programming I

LINEAR PROGRAMMING

- a refreshing example
- standard form
- fundamental questions
- geometry
- linear algebra
- simplex algorithm

Input size.

- $n=$ number of variables.
- $m=$ number of constraints.
- $L=$ number of bits to encode input.


## Brewery problem: feasible region



## Brewery problem: objective function



## Brewery problem: geometry

Brewery problem observation. Regardless of objective function coefficients, an optimal solution occurs at a vertex.


## Purificaiton

Theorem. If there exists an optimal solution to (P), then there exists one that is a vertex.

```
(P) max }\mp@subsup{c}{}{T}
    s.t. Ax = b
```

Intuition. If $x$ is not a vertex, move in a non-decreasing direction until you reach a boundary. Repeat.


## Convexity

Convex set. If two points $x$ and $y$ are in the set, then so is $\lambda x+(1-\lambda) y$ for $0 \leq \lambda \leq 1$.


Vertex. A point $x$ in the set that can't be written as a strict convex combination of two distinct points in the set.
vertex

convex

not convex

Observation. LP feasible region is a convex set.

## Purificaiton

Theorem. If there exists an optimal solution to (P), then there exists one that is a vertex.

Pf.

- Suppose $x$ is an optimal solution that is not a vertex.
- There exist direction $d \neq 0$ such that $x \pm d \in P$.
- $A d=0$ because $A(x \pm d)=b$.
- Assume $c^{\mathrm{T}} d \leq 0$ (by taking either $d$ or $-d$ ).
- Consider $x+\lambda d, \lambda>0$ :

Case 1. [ there exists $j$ such that $d_{j}<0$ ]

- Increase $\lambda$ to $\lambda^{*}$ until first new component of $x+\lambda d$ hits 0 .
- $x+\lambda^{*} d$ is feasible since $A\left(x+\lambda^{*} d\right)=A x=b$ and $x+\lambda^{*} y \geq 0$.
- $x+\lambda^{*} d$ has one more zero component than $x$.
- $c^{\mathrm{T}} x^{\prime}=c^{\mathrm{T}}\left(x+\lambda^{*} d\right)=c^{\mathrm{T}} x+\lambda^{*} c^{\mathrm{T}} d \leq c^{\mathrm{T}} x$.
$d_{k}=0$ whenever $x_{k}=0$ because $x \pm d \in P$

Theorem. If there exists an optimal solution to $(P)$, then there exists one that is a vertex.

Pf.

- Suppose $x$ is an optimal solution that is not a vertex.
- There exist direction $d \neq 0$ such that $x \pm d \in P$.
- $A d=0$ because $A(x \pm d)=b$.
- Assume $c^{\mathrm{T}} d \leq 0$ (by taking either $d$ or $-d$ ).
- Consider $x+\lambda d, \lambda>0$ :

Case 2. [ $d_{j} \geq 0$ for all $j$ ]

- $x+\lambda d$ is feasible for all $\lambda \geq 0$ since $A(x+\lambda d)=b$ and $x+\lambda d \geq x \geq 0$.
- As $\lambda \rightarrow \infty, c^{\mathrm{T}}(x+\lambda d) \rightarrow \infty$ because $c^{\mathrm{T}} d<0$.

if $c^{\mathrm{T}} d=0$, choose $d$ so that case 1 applies


## Intuition

Intuition. A vertex in $\Re^{m}$ is uniquely specified by $m$ linearly independent equations.


## Linear Programming I

LINEAR
> a refreshing example

- standard form
- fundamental auestions
- geometry
- linear algebra
, simplex algorithm


## Basic feasible solution

Theorem. Let $P=\{x: A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j: x_{j}>0\right\}$. Then, $x$ is a vertex iff $A_{B}$ has linearly independent columns.

Notation. Let $B=$ set of column indices. Define $A_{B}$ to be the subset of columns of $A$ indexed by $B$.

Ex.

$$
\begin{gathered}
A=\left[\begin{array}{llll}
2 & 1 & 3 & 0 \\
7 & 3 & 2 & 1 \\
0 & 0 & 0 & 5
\end{array}\right], b=\left[\begin{array}{c}
7 \\
16 \\
0
\end{array}\right] \\
x=\left[\begin{array}{l}
2 \\
0 \\
1 \\
0
\end{array}\right], \quad B=\{1,3\}, A_{B}=\left[\begin{array}{ll}
2 & 3 \\
7 & 2 \\
0 & 0
\end{array}\right]
\end{gathered}
$$

## Basic feasible solution

Theorem. Let $P=\{x: A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j: x_{j}>0\right\}$.
Then, $x$ is a vertex iff $A_{B}$ has linearly independent columns.

Pf. $\Leftarrow$

- Assume $x$ is not a vertex.
- There exist direction $d \neq 0$ such that $x \pm d \in P$.
- $A d=0$ because $A(x \pm d)=b$.
- Define $B^{\prime}=\left\{j: d_{j} \neq 0\right\}$.
- $A_{B^{\prime}}$ has linearly dependent columns since $d \neq 0$.
- Moreover, $d_{j}=0$ whenever $x_{j}=0$ because $x \pm d \geq 0$.
- Thus $B^{\prime} \subseteq B$, so $A_{B^{\prime}}$ is a submatrix of $A_{B}$.
- Therefore, $A_{B}$ has linearly dependent columns.


## Basic feasible solution

Theorem. Given $P=\{x: A x=b, x \geq 0\}, x$ is a vertex iff there exists
$B \subseteq\{1, \ldots, n\}$ such $|B|=m$ and:

- $A_{B}$ is nonsingular.
- $x_{B}=A_{B}^{-1} b \geq 0$.
- $x_{N}=0$.

Pf. Augment $A_{B}$ with linearly independent columns (if needed).

$$
\begin{gathered}
A=\left[\begin{array}{llll}
2 & 1 & 3 & 0 \\
7 & 3 & 2 & 1 \\
0 & 0 & 0 & 5
\end{array}\right], b=\left[\begin{array}{c}
7 \\
16 \\
0
\end{array}\right] \\
x=\left[\begin{array}{l}
2 \\
0 \\
1 \\
0
\end{array}\right], \quad B=\{1,3,4\}, \quad A_{B}=\left[\begin{array}{lll}
2 & 3 & 0 \\
7 & 2 & 1 \\
0 & 0 & 5
\end{array}\right]
\end{gathered}
$$

## Basic feasible solution

Theorem. Let $P=\{x: A x=b, x \geq 0\}$. For $x \in P$, define $B=\left\{j: x_{j}>0\right\}$. Then, $x$ is a vertex iff $A_{B}$ has linearly independent columns.

Pf. $\Rightarrow$

- Assume $A_{B}$ has linearly dependent columns.
- There exist $d \neq 0$ such that $A_{B} d=0$.
- Extend $d$ to $\Re^{n}$ by adding 0 components.
- Now, $A d=0$ and $d_{j}=0$ whenever $x_{j}=0$.
- For sufficiently small $\lambda, x \pm \lambda d \in P \Rightarrow x$ is not a vertex.


## Basic feasible solution: example

Basic feasible solutions.


## Fundamental questions

LP. For $A \in \Re^{m \times n}, b \in \Re^{m}, c \in \mathfrak{R}^{n}, \alpha \in \mathfrak{R}$, does there exist $x \in \Re^{n}$
such that: $A x=b, x \geq 0, c^{\mathrm{T}} x \geq \alpha$ ?
Q. Is LP in NP?
A. Yes.

- Number of vertices $\leq C(n, m)=\binom{n}{m} \leq n^{m}$.
- Cramer's rule $\Rightarrow$ can check a vertex in poly-time.


## Simplex algorithm: intuition

Simplex algorithm. [George Dantzig 1947] Move from BFS to adjacent BFS, without decreasing objective function.
replace one basic variable with another

Greedy property. BFS optimal iff no adjacent BFS is better.
Challenge. Number of BFS can be exponential!

## Linear Programming I

LINEAR PROGRAMMING

```
* a refreshing example
```

- standard form
- fundamental questions
- geometry
- linear algebra
- simplex algorithm

Cramer's rule. For $B \in \Re^{n \times n}$ invertible, $b \in \Re^{n}$,
the solution to $B x=b$ is given by:

$$
x_{i}=\frac{\operatorname{det}\left(B_{i}\right)}{\operatorname{det}(B)} \quad \text { replace ith column of } B \text { with } b
$$



## Simplex algorithm: pivot 1

| max $Z$ subject to |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $13 A+23 B$ |  |  |  |  |  | - | Z | $=$ | 0 |
| 5 A | + | $15 B$ |  |  |  |  |  | = | 480 |
| 4 A | + | $4 B$ | + |  |  |  |  | = | 160 |
| 35A | + | $20 B$ |  |  | + |  |  |  | 1190 |
| A |  | $B$ |  | $S_{H}$ |  | $S_{M}$ |  | $\geq$ | 0 |

$$
\begin{aligned}
& \text { Basis }=\left\{S_{C}, S_{H}, S_{M}\right\} \\
& A=B=0 \\
& Z=0 \\
& S_{C}=480 \\
& S_{H}=160 \\
& S_{M}=1190
\end{aligned}
$$

Substitute: $B=1 / 15\left(480-5 A-S_{C}\right)$

| max $Z$ subject to |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{16}{3} A$ |  |  |  | ${ }^{23} S_{C}$ |  |  |  |  | Z | $=$ | -736 |
| $\frac{1}{3} A$ | $+$ |  |  | $\frac{1}{15} S_{C}$ |  |  |  |  |  | = | 32 |
| ${ }^{\frac{8}{3}}$ A |  |  |  | ${ }_{15}^{4} S_{C}$ | $+$ | $S_{H}$ |  |  |  | = | 32 |
| ${ }^{85}$ A |  |  |  | ${ }_{4}^{4} S_{C}$ |  |  | $+$ |  |  | = | 550 |
| A | , | B |  | $S_{C}$ |  | $S_{H}$ | , | $S_{M}$ |  | $\geq$ | 0 |

Basis $=\left\{B, S_{H}, S_{M}\right\}$
$A=S_{C}=0$
$Z=736$
$B=32$
$S_{H}=32$
$S_{M}=550$

## Simplex algorithm: pivot 2


Basis $=\left\{B, S_{H}, S_{M}\right\}$
$A=S_{C}=0$
$Z=736$
$B=32$
$S_{H}=32$
$S_{M}=550$

## Simplex algorithm: pivot 1


Q. Why pivot on column 2 (or 1)?
A. Each unit increase in $B$ increases objective value by $\$ 23$.
Q. Why pivot on row 2 ?
A. Preserves feasibility by ensuring RHS $\geq 0$.
min ratio rule: $\min \{480 / 15,160 / 4,1190 / 20\}$

## Simplex algorithm: optimality

Q. When to stop pivoting?
A. When all coefficients in top row are nonpositive.
Q. Why is resulting solution optimal?
A. Any feasible solution satisfies system of equations in tableaux.

- In particular: $Z=800-S_{C}-2 S_{H}, S_{C} \geq 0, S_{H} \geq 0$.
- Thus, optimal objective value $Z^{*} \leq 800$

Current BFS has value $800 \Rightarrow$ optimal.


## Simplex tableaux: matrix form

Initial simplex tableaux.

$$
\begin{aligned}
c_{B}^{T} x_{B}+c_{N}^{T} x_{N} & =Z \\
A_{B} x_{B}+A_{N} x_{N} & =b \\
x_{B}, & x_{N}
\end{aligned} \geq 0
$$

Simplex tableaux corresponding to basis $B$.

$$
\begin{array}{rlrl} 
\\
\left.I x_{B}+c_{N}^{T}-c_{B}^{T} A_{B}^{-1} A_{N}\right) x_{N} & = & Z-c_{B}^{T} A_{B}^{-1} b \leftarrow \text { subtract } c_{B}{ }^{T} A_{B^{1}}{ }^{1} \text { times constraints } \\
A_{B}^{-1} A_{N} x_{N} & = & A_{B}^{-1} b \leftarrow \text { multiply by } A_{B^{1}} \\
x_{B}, & x_{N} & \geq & 0
\end{array}
$$

$$
\begin{array}{cl}
x_{B}=A_{B}{ }^{-1} b \geq 0 \\
x_{N}=0 & c_{N}^{T}-c_{B}^{T} A_{B}^{-1} A_{N} \leq 0
\end{array}
$$

basic feasible solution
optimal basis

## Unboundedness

Q. What happens if min ratio test fails?

$$
\begin{aligned}
& \text { all coefficients in entering } \\
& \text { column are nonpositive }
\end{aligned}
$$

| $\max Z$ subject to |  |  |  |
| ---: | :--- | ---: | :--- |
|  |  | $+2 x_{4}+20 x_{5}-Z$ | $=2$ |
| $x_{1}$ |  | $-4 x_{4}-8 x_{5}$ | $=3$ |
|  | $x_{2}$ | $+5 x_{4}-12 x_{5}$ | $=4$ |
|  |  |  |  |
| $x_{1}, x_{2}, x_{3}$ | $, x_{4}, x_{5}$ | $\geq 0$ |  |

A. Unbounded objective function.

$$
Z=2+20 x_{5}\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
3+8 x_{5} \\
4+12 x_{5} \\
5 \\
0 \\
0
\end{array}\right]
$$

## Simplex algorithm: corner cases

Simplex algorithm. Missing details for corner cases.
Q. What if min ratio test fails?
Q. How to find initial basis?
Q. How to guarantee termination?

## Phase I simplex method

Q. How to find initial basis?

$$
\text { (P) } \begin{aligned}
\max & c^{T} x \\
\text { s. t. } & A x
\end{aligned}=b
$$

A. Solve ( $\mathrm{P}^{\prime}$ ), starting from basis consisting of all the $z_{i}$ variables.


- Case 1: $\min >0 \Rightarrow(P)$ is infeasible.
- Case 2: $\min =0$, basis has no $z_{i}$ variables $\Rightarrow$ okay to start Phase II.
- Case 3a: $\min =0$, basis has $z_{i}$ variables. Pivot $z_{i}$ variables out of basis. If successful, start Phase II; else remove linear dependent rows.


## Simplex algorithm: degeneracy

Degeneracy. New basis, same vertex.


Degenerate pivot. Min ratio $=0$.


## Lexicographic rule

Intuition. No degeneracy $\Rightarrow$ no cycling.

Perturbed problem.
much much greater,
say $\varepsilon_{i}=\delta^{i}$ for small $\delta$

$$
\begin{aligned}
& \text { ( } \mathrm{P}^{\prime} \text { ) max } c^{T} x
\end{aligned}
$$

Lexicographic rule. Apply perturbation virtually by manipulating $\varepsilon$ symbolically:

$$
17+5 \varepsilon_{1}+11 \varepsilon_{2}+8 \varepsilon_{3} \leq 17+5 \varepsilon_{1}+14 \varepsilon_{2}+3 \varepsilon_{3}
$$

## Simplex algorithm: degeneracy

Degeneracy. New basis, same vertex.


Cycling. Infinite loop by cycling through different bases that all correspond to same vertex.

Anti-cycling rules.

- Bland's rule: choose eligible variable with smallest index.
- Random rule: choose eligible variable uniformly at random.
- Lexicographic rule: perturb constraints so nondegenerate.


## Lexicographic rule

Intuition. No degeneracy $\Rightarrow$ no cycling.

Perturbed problem.
( $\mathrm{P}^{\prime}$ ) $\max c^{T} x$

$$
\begin{array}{rr}
\operatorname{nax} \quad c^{T} x \\
\text { s.t. } \quad A x & =b+\varepsilon \quad \text { where } \varepsilon=\left[\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\vdots \\
\varepsilon_{n}
\end{array}\right], ~ \\
& \geq 0
\end{array}
$$

such that $\varepsilon_{1} \succ \varepsilon_{2} \succ \cdots \succ \varepsilon^{\prime}$

Claim. In perturbed problem, $x_{B}=A_{B}^{-1}(b+\varepsilon)$ is always nonzero.
Pf. The $j^{\text {th }}$ component of $x_{B}$ is a (nonzero) linear combination of the components of $b+\varepsilon \Rightarrow$ contains at least one of the $\varepsilon_{i}$ terms.

Corollary. No cycling.

## Simplex algorithm: practice

Remarkable property. In practice, simplex algorithm typically terminates after at most $2(m+n)$ pivots.
but no polynomial pivot rule known
Issues.

- Avoid stalling.
- Choose the pivot.
- Maintain sparsity.
- Ensure numerical stability.
- Preprocess to eliminate variables and constraints.

Commercial solvers can solve LPs with millions of variables and tens of thousands of constraints.

