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Data structures

Static problems.  Given an input, produce an output. 

Ex.  Sorting, FFT, edit distance, shortest paths, MST, max-flow, ... 

 

Dynamic problems.  Given a sequence of operations (given one at a time), 

produce a sequence of outputs. 

Ex.  Stack, queue, priority queue, symbol table, union–find, …. 

 

Algorithm.  Step-by-step procedure to solve a problem. 

Data structure.  Way to store and organize data. 

Ex.  Array, linked list, binary heap, binary search tree, hash table, …
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Appetizer

Goal.  Design a data structure to support all operations in O(1) time. 

・INIT(n):  create and return an initialized array (all zero) of length n. 

・READ(A, i):  return element i in array. 

・WRITE(A, i, value):  set element i in array to value. 
 

Assumptions. 

・Can MALLOC an uninitialized array of length n in O(1) time. 

・Given an array, can read or write element i in O(1) time. 

Remark.  An array does INIT in Θ(n) time and READ and WRITE in Θ(1) time.
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true in C or C++, but not Java



Appetizer

Data structure.  Three arrays A[1.. n], B[1.. n], and C[1.. n], and an integer k. 

・A[i] stores the current value for READ (if initialized). 

・k = number of initialized entries. 

・C[j] = index of j th initialized element for j = 1, …, k. 

・If C[j] = i, then B[i] = j for j = 1, …, k. 
 

Theorem.  A[i] is initialized iff both 1 ≤ B[i] ≤ k and C[B[i]]  =  i. 
Pf.  Ahead.
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Appetizer
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READ (A, i)                          
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

IF  (IS-INITIALIZED (A[i]))

RETURN A[i].  

ELSE

RETURN  0.                  
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

WRITE (A, i, value)                          
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

IF  (IS-INITIALIZED (A[i]))

A[i] ← value. 

ELSE

k ← k + 1.

A[i] ← value.

B[i] ← k.

C[k] ← i.                          
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________IS-INITIALIZED (A, i)                          



IF  (1 ≤ B[i]  ≤  k) and (C[B[i]] =  i)

RETURN true.  

ELSE

RETURN  false.                  
_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

INIT (A, n)                          
______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
_____________________________________________________________________________

k  ← 0.

A ← MALLOC(n).  

B ← MALLOC(n).  

C ← MALLOC(n).  
______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
_____________________________________________________________________________



Appetizer

Theorem.  A[i] is initialized iff both 1 ≤ B[i] ≤  k and C[B[i]] =  i. 
Pf.   ⇒ 

・Suppose A[i] is the j th entry to be initialized. 

・Then C[j] = i and B[i] = j. 

・Thus, C[B[i]] =  i.
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Appetizer

Theorem.  A[i] is initialized iff both 1 ≤ B[i] ≤  k and C[B[i]] =  i. 
Pf.   ⇐ 

・Suppose A[i] is uninitialized.  

・If B[i]  < 1 or B[i]  >  k, then A[i] clearly uninitialized. 

・If 1 ≤  B[i]  ≤  k by coincidence, then we still can’t have C[B[i]] =  i 
because none of the entries C[1.. k] can equal i.  ▪  
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AMORTIZED ANALYSIS

‣ binary counter 

‣ multi-pop stack 

‣ dynamic table
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Amortized analysis

Worst-case analysis.  Determine worst-case running time of a data structure 

operation as function of the input size n. 

 

 

 

 

Amortized analysis.  Determine worst-case running time of a sequence 

of n data structure operations. 

 

Ex.  Starting from an empty stack implemented with a dynamic table, any 

sequence of n push and pop operations takes O(n) time in the worst case.
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can be too pessimistic if the only way to 
encounter an expensive operation is when 

there were lots of previous cheap operations



Amortized analysis:  applications

・Splay trees. 

・Dynamic table. 

・Fibonacci heaps. 

・Garbage collection. 

・Move-to-front list updating. 

・Push–relabel algorithm for max flow. 

・Path compression for disjoint-set union. 

・Structural modifications to red–black trees. 

・Security, databases, distributed computing, ...
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AMORTIZED COMPUTATIONAL COMPLEXITY*
ROBERT ENDRE TARJANt

Abstract. A powerful technique in the complexity analysis of data structures is amortization, or averaging
over time. Amortized running time is a realistic but robust complexity measure for which we can obtain
surprisingly tight upper and lower bounds on a variety of algorithms. By following the principle of designing
algorithms whose amortized complexity is low, we obtain "self-adjusting" data structures that are simple,
flexible and efficient. This paper surveys recent work by several researchers on amortized complexity.

ASM(MOS) subject classifications. 68C25, 68E05

1. Introduction. Webster’s [34] defines "amortize" as "to put money aside at
intervals, as in a sinking fund, for gradual payment of (a debt, etc.)." We shall adapt
this term to computational complexity, meaning by it "to average over time" or, more
precisely, "to average the running times of operations in a sequence over the sequence."
The following observation motivates our study of amortization: In many uses of data
structures, a sequence of operations, rather than just a single operation, is performed,
and we are interested in the total time of the sequence, rather than in the times of
the individual operations. A worst-case analysis, in which we sum the worst-case times
of the individual operations, may be unduly pessimistic, because it ignores correlated
effects of the operations on the data structure. On the other hand, an average-case
analysis may be inaccurate, since the probabilistic assumptions needed to carry out
the analysis may be false. In such a situation, an amortized analysis, in which we
average the running time per operation over a (worst-case) sequence of operations,
can yield an answer that is both realistic and robust.

To make the idea of amortization and the motivation behind it more concrete,
let us consider a very simple example. Consider the manipulation of a stack by a
sequence of operations composed of two kinds of unit-time primitives: push, which
adds a new item to the top of the stack, and pop, which removes and returns the top
item on the stack. We wish to analyze the running time of a sequence of operations,
each composed of zero or more pops followed by a push. Assume we start with an
empty stack and carry out m such operations. A single operation in the sequence can
take up to m time units, as happens if each of the first m- 1 operations performs no
pops and the last operation performs m 1 pops. However, altogether the m operations
can perform at most 2m pushes and pops, since there are only m pushes altogether
and each pop must correspond to an earlier push.

This example may seem too simple to be useful, but such stack manipulation
indeed occurs in applications as diverse as planarity-testing [14] and related problems
[24] and linear-time string matching [18]. In this paper we shall survey a number of
settings in which amortization is useful. Not only does amortized running time provide
a more exact way to measure the running time of known algorithms, but it suggests
that there may be new algorithms efficient in an amortized rather than a worst-case
sense. As we shall see, such algorithms do exist, and they are simpler, more efficient,
and more flexible than their worst-case cousins.

* Received by the editors December 29, 1983. This work was presented at the SIAM Second Conference
on the Applications of Discrete Mathematics held at Massachusetts Institute of Technology, Cambridge,
Massachusetts, June 27-29, 1983.

t Bell Laboratories, Murray Hill, New Jersey 07974.
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CHAPTER 17

AMORTIZED ANALYSIS

‣ binary counter 

‣ multi-pop stack 

‣ dynamic table



Binary counter

Goal.  Increment a k-bit binary counter (mod 2k). 
Representation.  A[ j] = j th least significant bit of counter. 

 

 

 

 

 

 

 

 

 

 

 

 

Cost model.  Number of bits flipped.
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17.1 Aggregate analysis 455

0 0 0 0 0 0 0 00
0 0 0 0 0 0 0 11
0 0 0 0 0 0 1 02
0 0 0 0 0 0 1 13
0 0 0 0 0 1 0 04
0 0 0 0 0 1 0 15
0 0 0 0 0 1 1 06
0 0 0 0 0 1 1 17
0 0 0 0 1 0 0 08
0 0 0 0 1 0 0 19
0 0 0 0 1 0 1 010
0 0 0 0 1 0 1 111
0 0 0 0 1 1 0 012
0 0 0 0 1 1 0 113
0 0 0 0 1 1 1 014
0 0 0 0 1 1 1 115
0 0 0 1 0 0 0 016

A[0]A[1]A[2]A[3]A[4]A[5]A[6]A[7]
Counter

value
Total
cost

1
3
4
7
8

10
11
15
16
18
19
22
23
25
26
31

0

Figure 17.2 An 8-bit binary counter as its value goes from 0 to 16 by a sequence of 16 INCREMENT
operations. Bits that flip to achieve the next value are shaded. The running cost for flipping bits is
shown at the right. Notice that the total cost is always less than twice the total number of INCREMENT
operations.

operations on an initially zero counter causes AŒ1! to flip bn=2c times. Similarly,
bit AŒ2! flips only every fourth time, or bn=4c times in a sequence of n INCREMENT
operations. In general, for i D 0; 1; : : : ; k ! 1, bit AŒi ! flips bn=2ic times in a
sequence of n INCREMENT operations on an initially zero counter. For i " k,
bit AŒi ! does not exist, and so it cannot flip. The total number of flips in the
sequence is thus
k!1X

iD0

j n

2i

k
< n

1X

iD0

1

2i

D 2n ;

by equation (A.6). The worst-case time for a sequence of n INCREMENT operations
on an initially zero counter is therefore O.n/. The average cost of each operation,
and therefore the amortized cost per operation, is O.n/=n D O.1/.



Binary counter

Goal.  Increment a k-bit binary counter (mod 2k). 
Representation.  A[ j] = j th least significant bit of counter. 

 

 

 

 

 

 

 

 

 

 

 

Theorem.  Starting from the zero counter, a sequence of n INCREMENT 

operations flips O(n k) bits. 

Pf.  At most k bits flipped per increment.  ▪
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operations on an initially zero counter causes AŒ1! to flip bn=2c times. Similarly,
bit AŒ2! flips only every fourth time, or bn=4c times in a sequence of n INCREMENT
operations. In general, for i D 0; 1; : : : ; k ! 1, bit AŒi ! flips bn=2ic times in a
sequence of n INCREMENT operations on an initially zero counter. For i " k,
bit AŒi ! does not exist, and so it cannot flip. The total number of flips in the
sequence is thus
k!1X

iD0

j n

2i

k
< n

1X

iD0

1

2i

D 2n ;

by equation (A.6). The worst-case time for a sequence of n INCREMENT operations
on an initially zero counter is therefore O.n/. The average cost of each operation,
and therefore the amortized cost per operation, is O.n/=n D O.1/.

overly pessimistic upper bound



Aggregate method (brute force)

Aggregate method.  Analyze cost of a sequence of operations.
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operations on an initially zero counter causes AŒ1! to flip bn=2c times. Similarly,
bit AŒ2! flips only every fourth time, or bn=4c times in a sequence of n INCREMENT
operations. In general, for i D 0; 1; : : : ; k ! 1, bit AŒi ! flips bn=2ic times in a
sequence of n INCREMENT operations on an initially zero counter. For i " k,
bit AŒi ! does not exist, and so it cannot flip. The total number of flips in the
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by equation (A.6). The worst-case time for a sequence of n INCREMENT operations
on an initially zero counter is therefore O.n/. The average cost of each operation,
and therefore the amortized cost per operation, is O.n/=n D O.1/.



Binary counter:  aggregate method

Starting from the zero counter, in a sequence of n INCREMENT operations: 

・Bit 0 flips n times. 

・Bit 1 flips ⎣ n / 2⎦ times. 

・Bit 2 flips ⎣ n / 4⎦ times. 

・… 

Theorem.  Starting from the zero counter, a sequence of n INCREMENT 

operations flips O(n) bits. 

Pf. 

・Bit j flips ⎣ n / 2 j⎦ times. 

・The total number of bits flipped is 

 

 

 

Remark. Theorem may be false if initial counter is not zero.
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Accounting method (banker’s method)

Assign (potentially) different charges to each operation. 

・Di   = data structure after i th operation. 

・ci   = actual cost of i th operation. 

・ĉi   = amortized cost of i th operation  = amount we charge operation i. 

・When ĉi  >  ci, we store credits in data structure Di to pay for future ops; 

when ĉi  <  ci, we consume credits in data structure Di. 

・Initial data structure D0 starts with 0 credits. 

 

Credit invariant.  The total number of credits in the data structure ≥  0. 
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can be more or less 
than actual cost

n�

i=1

ĉi �
n�

i=1

ci � 0 our job is to choose suitable amortized 
costs so that this invariant holds



Accounting method (banker’s method)

Assign (potentially) different charges to each operation. 

・Di   = data structure after i th operation. 

・ci   = actual cost of i th operation. 

・ĉi   = amortized cost of i th operation  = amount we charge operation i. 

・When ĉi  >  ci, we store credits in data structure Di to pay for future ops; 

when ĉi  <  ci, we consume credits in data structure Di. 

・Initial data structure D0 starts with 0 credits. 

 

Credit invariant.  The total number of credits in the data structure ≥  0. 

 

 

 

Theorem.  Starting from the initial data structure D0, the total actual cost of 

any sequence of n operations is at most the sum of the amortized costs. 

Pf.  The amortized cost of the sequence of n operations is: 

 

Intuition.  Measure running time in terms of credits (time = money).
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Binary counter:  accounting method

Credits.  One credit pays for a bit flip. 

Invariant.  Each 1 bit has one credit; each 0 bit has zero credits. 

 

Accounting. 

・Flip bit j from 0 to 1: charge 2 credits (use one and save one in bit j).
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Binary counter:  accounting method

Credits.  One credit pays for a bit flip. 

Invariant.  Each 1 bit has one credit; each 0 bit has zero credits. 

 

Accounting. 

・Flip bit j from 0 to 1: charge 2 credits (use one and save one in bit j). 

・Flip bit j from 1 to 0:  pay for it with the 1 credit saved in bit j.
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Binary counter:  accounting method

Credits.  One credit pays for a bit flip. 

Invariant.  Each 1 bit has one credit; each 0 bit has zero credits. 

 

Accounting. 

・Flip bit j from 0 to 1: charge 2 credits (use one and save one in bit j). 

・Flip bit j from 1 to 0:  pay for it with the 1 credit saved in bit j.
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Binary counter:  accounting method

Credits.  One credit pays for a bit flip. 

Invariant.  Each 1 bit has one credit; each 0 bit has zero credits. 

 

Accounting. 

・Flip bit j from 0 to 1: charge 2 credits (use one and save one in bit j). 

・Flip bit j from 1 to 0:  pay for it with the 1 credit saved in bit j. 
 

Theorem.  Starting from the zero counter, a sequence of n INCREMENT 

operations flips O(n) bits. 

Pf.   

・Each INCREMENT operation flips at most one 0 bit to a 1 bit, 

so the amortized cost per INCREMENT  ≤  2.  

・Invariant  ⇒  number of credits in data structure  ≥  0.  

・Total actual cost of n operations  ≤  sum of amortized costs  ≤   2 n.  ▪

21

accounting method theorem

the rightmost 0 bit 
(unless counter overflows)



Potential method (physicist’s method)

Potential function.  Φ(Di) maps each data structure Di to a real number s.t.: 

・Φ(D0)  =  0. 

・Φ(Di)  ≥  0 for each data structure Di. 

 

Actual and amortized costs. 

・ci  = actual cost of i th operation. 

・ĉi   =  ci  +  Φ(Di)  –  Φ(Di–1)  = amortized cost of i th operation.

22

our job is to choose 
a potential function 

so that the amortized cost 
of each operation is low



Potential method (physicist’s method)

Potential function.  Φ(Di) maps each data structure Di to a real number s.t.: 

・Φ(D0)  =  0. 

・Φ(Di)  ≥  0 for each data structure Di. 

 

Actual and amortized costs. 

・ci  = actual cost of i th operation. 

・ĉi   =  ci  +  Φ(Di)  –  Φ(Di–1)  = amortized cost of i th operation. 

 

Theorem.  Starting from the initial data structure D0, the total actual cost of 

any sequence of n operations is at most the sum of the amortized costs. 

Pf.  The amortized cost of the sequence of operations is:
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Binary counter:  potential method

Potential function. Let Φ(D) = number of 1 bits in the binary counter D. 

・Φ(D0)  =  0. 

・Φ(Di)  ≥  0 for each Di.
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Binary counter:  potential method

Potential function. Let Φ(D) = number of 1 bits in the binary counter D. 

・Φ(D0)  =  0. 

・Φ(Di)  ≥  0 for each Di.
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Binary counter:  potential method

Potential function. Let Φ(D) = number of 1 bits in the binary counter D. 

・Φ(D0)  =  0. 

・Φ(Di)  ≥  0 for each Di.
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Binary counter:  potential method

Potential function. Let Φ(D) = number of 1 bits in the binary counter D. 

・Φ(D0)  =  0. 

・Φ(Di)  ≥  0 for each Di. 

 

 

Theorem.  Starting from the zero counter, a sequence of n INCREMENT 

operations flips O(n) bits. 

Pf. 

・Suppose that the i th INCREMENT operation flips ti bits from 1 to 0. 

・The actual cost ci  ≤  ti  + 1. 

・The amortized cost ĉi   =  ci  + Φ(Di)  –  Φ(Di–1)
                ≤  ci  + 1 –  ti

                   ≤  2. 

・Total actual cost of n operations  ≤  sum of amortized costs ≤  2 n.   ▪
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operation flips at most one bit from 0 to 1 
(no bits flipped to 1 when counter overflows)

potential method theorem

potential decreases by 1 for ti bits flipped from 1 to 0 
and increases by 1 for bit flipped from 0 to 1



Famous potential functions

Fibonacci heaps.

 
 
Splay trees. 

 

 

Move-to-front.

 
 
Preflow–push.  

 
 
Red–black trees.
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SECTION 17.4

AMORTIZED ANALYSIS

‣ binary counter 

‣ multi-pop stack 

‣ dynamic table



Multipop stack

Goal.  Support operations on a set of elements: 

・PUSH(S, x):  add element x to stack S. 

・POP(S):  remove and return the most-recently added element. 

・MULTI-POP(S, k):  remove the most-recently added k elements. 

 

 

 

 

 

 

 

 

 

 

 

Exceptions.  We assume POP throws an exception if stack is empty.
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MULTI-POP(S, k)                       
________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
___

FOR  i = 1 TO k  

POP(S).
________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
___



Multipop stack

Goal.  Support operations on a set of elements: 

・PUSH(S, x):  add element x to stack S. 

・POP(S):  remove and return the most-recently added element. 

・MULTI-POP(S, k):  remove the most-recently added k elements. 

 

 

Theorem. Starting from an empty stack, any intermixed sequence of n 
PUSH, POP, and MULTI-POP operations takes O(n2) time. 

Pf. 

・Use a singly linked list. 

・PoP and PUSH take O(1) time each. 

・MULTI-POP takes O(n) time.   ▪
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overly pessimistic 
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Multipop stack:  aggregate method

Goal.  Support operations on a set of elements: 

・PUSH(S, x):  add element x to stack S. 

・POP(S):  remove and return the most-recently added element. 

・MULTI-POP(S, k):  remove the most-recently added k elements. 

 

 

Theorem. Starting from an empty stack, any intermixed sequence of n 
PUSH, POP, and MULTI-POP operations takes O(n) time. 

 

Pf. 

・An element is popped at most once for each time that it is pushed. 

・There are ≤ n PUSH operations.

・Thus, there are ≤ n POP operations 

(including those made within MULTI-POP).   ▪
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Multipop stack:  accounting method

Credits.  1 credit pays for either a PUSH or POP. 

Invariant.  Every element on the stack has 1 credit. 

 

Accounting. 

・PUSH(S, x):  charge 2 credits. 
- use 1 credit to pay for pushing x now 
- store 1 credit to pay for popping x at some point in the future 

・POP(S):  charge 0 credits. 

・MULTIPOP(S, k):  charge 0 credits. 

 

Theorem. Starting from an empty stack, any intermixed sequence of n 
PUSH, POP, and MULTI-POP operations takes O(n) time.  

Pf. 

・Invariant  ⇒  number of credits in data structure  ≥  0.  

・Amortized cost per operation  ≤  2.  

・Total actual cost of n operations ≤  sum of amortized costs  ≤  2n.  ▪
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Multipop stack:  potential method

Potential function. Let Φ(D) = number of elements currently on the stack. 

・Φ(D0) =  0. 

・Φ(Di)  ≥  0 for each Di. 

 

Theorem. Starting from an empty stack, any intermixed sequence of n 
PUSH, POP, and MULTI-POP operations takes O(n) time.  

 

Pf.  [Case 1: push] 

・Suppose that the i th operation is a PUSH. 

・The actual cost ci  = 1. 

・The amortized cost ĉi   =  ci  + Φ(Di)  –  Φ(Di–1)  =  1  +  1  =  2.
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Multipop stack:  potential method

Potential function. Let Φ(D) = number of elements currently on the stack. 

・Φ(D0) =  0. 

・Φ(Di)  ≥  0 for each Di. 

 

Theorem. Starting from an empty stack, any intermixed sequence of n 
PUSH, POP, and MULTI-POP operations takes O(n) time.  

 

Pf.  [Case 2: pop] 

・Suppose that the i th operation is a POP. 

・The actual cost ci  = 1. 

・The amortized cost ĉi   =  ci  + Φ(Di)  –  Φ(Di–1)  =  1  –  1  =  0.
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Multipop stack:  potential method

Potential function. Let Φ(D) = number of elements currently on the stack. 

・Φ(D0) =  0. 

・Φ(Di)  ≥  0 for each Di. 

 

Theorem. Starting from an empty stack, any intermixed sequence of n 
PUSH, POP, and MULTI-POP operations takes O(n) time.  

 

Pf.  [Case 3: multi-pop] 

・Suppose that the i th operation is a MULTI-POP of k objects. 

・The actual cost ci  = k. 

・The amortized cost ĉi   =  ci  + Φ(Di)  –  Φ(Di–1)  =  k  –  k  =  0.  ▪
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Multipop stack:  potential method

Potential function. Let Φ(D) = number of elements currently on the stack. 

・Φ(D0) =  0. 

・Φ(Di)  ≥  0 for each Di. 

 

Theorem. Starting from an empty stack, any intermixed sequence of n 
PUSH, POP, and MULTI-POP operations takes O(n) time.  

 

Pf.  [putting everything together]  

・Amortized cost ĉi   ≤  2. 

・Sum of amortized costs ĉi  of the n operations  ≤  2 n. 

・Total actual cost ≤  sum of amortized cost ≤  2 n.   ▪
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SECTION 17.4

AMORTIZED ANALYSIS

‣ binary counter 

‣ multi-pop stack 

‣ dynamic table



Dynamic table

Goal.  Store items in a table (e.g., for hash table, binary heap). 

・Two operations:  INSERT and DELETE. 

- too many items inserted  ⇒  expand table. 

- too many items deleted   ⇒  contract table. 

・Requirement:  if table contains m items, then space = Θ(m). 
 

 

Theorem. Starting from an empty dynamic table, any intermixed sequence 

of n INSERT and DELETE operations takes O(n2) time.  

 

Pf.  Each INSERT or DELETE takes O(n) time.  ▪
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Dynamic table:  insert only

・When inserting into an empty table, allocate a table of capacity 1. 

・When inserting into a full table, allocate a new table of twice the 

capacity and copy all items. 

・Insert item into table. 

 

 

 

 

 

 

 

 

 

 

 

Cost model.  Number of items written (due to insertion or copy).
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insert old 
capacity

new 
capacity

insert  
cost

copy
cost

1 0 1 1 –

2 1 2 1 1

3 2 4 1 2

4 4 4 1 –

5 4 8 1 4

6 8 8 1 –

7 8 8 1 –

8 8 8 1 –

9 8 16 1 8

⋮ ⋮ ⋮ ⋮ ⋮



Dynamic table:  insert only (aggregate method)

Theorem.  [via aggregate method]  Starting from an empty dynamic table, 

any sequence of n INSERT operations takes O(n) time. 

 

Pf.  Let ci denote the cost of the i th insertion. 

 

 

 

 

Starting from empty table, the cost of a sequence of n INSERT operations is:

41

n�

i=1

ci � n +

�lg n��

j=0

2j

< n + 2n

= 3n

ci =

�
i B7 i � 1 Bb �M 2t�+i TQr2` Q7 k
1 Qi?2`rBb2

▪

n�

i=1

ci � n +

�lg n��

j=0

2j

< n + 2n

= 3n

n�

i=1

ci � n +

�lg n��

j=0

2j

< n + 2n

= 3n



Insert.  Charge 3 credits (use 1 credit to insert; save 2 with new item). 

Invariant.  2 credits with each item in right half of table; none in left half.

Dynamic table demo:  insert only (accounting method)
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Dynamic table:  insert only (accounting method)

Insert.  Charge 3 credits (use 1 credit to insert; save 2 with new item). 

 

Invariant.  2 credits with each item in right half of table; none in left half. 

Pf.  [by induction] 

・Each newly inserted item gets 2 credits. 

・When table doubles from k to 2k, k / 2 items in the table have 2 credits. 
- these k credits pay for the work needed to copy the k items 
- now, all k items are in left half of table (and have 0 credits) 

 

Theorem.  [via accounting method]  Starting from an empty dynamic table, 

any sequence of n INSERT operations takes O(n) time. 

Pf.  

・Invariant ⇒  number of credits in data structure  ≥  0.  

・Amortized cost per INSERT =  3.  

・Total actual cost of n operations  ≤  sum of amortized cost ≤ 3n.   ▪
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accounting method theorem

slight cheat if table capacity = 1 
(can charge only 2 credits for first insert)



Dynamic table:  insert only (potential method)

Theorem.  [via potential method]  Starting from an empty dynamic table, 

any sequence of n INSERT operations takes O(n) time. 

 

Pf.  Let Φ(Di) = 2 size(Di)  – capacity(Di). 
 

・Φ(D0) =  0. 

・Φ(Di)  ≥  0 for each Di.
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immediately after doubling 
capacity(Di)  =  2 size(Di)



Dynamic table:  insert only (potential method)

Theorem.  [via potential method]  Starting from an empty dynamic table, 

any sequence of n INSERT operations takes O(n) time. 

 

Pf.  Let Φ(Di) = 2 size(Di)  – capacity(Di). 
 

・Φ(D0) =  0. 

・Φ(Di)  ≥  0 for each Di. 

 

Case 0.  [first insertion] 

・Actual cost c1 = 1. 

・Φ(D1) –  Φ(D0) = (2 size(D1)  – capacity(D1))  –  (2 size(D0)  – capacity(D0)) 
= 1. 

・Amortized cost ĉ1  =  c1  +  (Φ(D1)  –  Φ(D0)) 
 = 1 + 1 
 = 2.
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Dynamic table:  insert only (potential method)

Theorem.  [via potential method]  Starting from an empty dynamic table, 

any sequence of n INSERT operations takes O(n) time. 

 

Pf.  Let Φ(Di) = 2 size(Di)  – capacity(Di). 
 

・Φ(D0) =  0. 

・Φ(Di)  ≥  0 for each Di. 

 

Case 1.  [no array expansion]  capacity(Di)  = capacity(Di–1). 

・Actual cost ci  = 1. 

・Φ(Di) –  Φ(Di–1)  = (2 size(Di)  – capacity(Di))  –  (2 size(Di–1)  – capacity(Di–1)) 
 = 2. 

・Amortized cost ĉi  =  ci  +  (Φ(Di)  –  Φ(Di–1)) 
 = 1 + 2 
 = 3.
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Dynamic table:  insert only (potential method)

Theorem.  [via potential method]  Starting from an empty dynamic table, 

any sequence of n INSERT operations takes O(n) time. 

 

Pf.  Let Φ(Di) = 2 size(Di)  – capacity(Di). 
 

・Φ(D0) =  0. 

・Φ(Di)  ≥  0 for each Di. 

Case 2.  [array expansion]   capacity(Di)  = 2 capacity(Di–1). 

・Actual cost ci  = 1 + capacity(Di–1). 

・Φ(Di) –  Φ(Di–1)  = (2 size(Di)  – capacity(Di))  –  (2 size(Di–1)  – capacity(Di–1)) 
 = 2 – capacity(Di) + capacity(Di–1) 
 = 2 – capacity(Di–1). 

・Amortized cost ĉi   =  ci  +  (Φ(Di)  –  Φ(Di–1)) 
 = 1 + capacity(Di–1) + (2 – capacity(Di–1)) 
 = 3.
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Dynamic table:  insert only (potential method)

Theorem.  [via potential method]  Starting from an empty dynamic table, 

any sequence of n INSERT operations takes O(n) time. 

 

Pf.  Let Φ(Di) = 2 size(Di)  – capacity(Di). 
 

・Φ(D0) =  0. 

・Φ(Di)  ≥  0 for each Di. 

 

[putting everything together]  

・Amortized cost per operation ĉi ≤  3. 

・Total actual cost of n operations  ≤  sum of amortized cost  ≤  3 n.   ▪
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Dynamic table:  doubling and halving

Thrashing. 

・INSERT: when inserting into a full table, double capacity. 

・DELETE: when deleting from a table that is ½-full, halve capacity. 

 

 

Efficient solution. 

・When inserting into an empty table, initialize table size to 1; 

when deleting from a table of size 1, free the table. 

・INSERT: when inserting into a full table, double capacity. 

・DELETE: when deleting from a table that is ¼-full, halve capacity. 

 

 

Memory usage.  A dynamic table uses Θ(n) memory to store n items. 

Pf.  Table is always between 25% and 100% full.  ▪
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Insert.  Charge 3 credits (1 to insert; save 2 with item if in right half). 

Delete.  Charge 2 credits (1 to delete; save 1 in empty slot if in left half). 

 

Invariant 1.  2 credits with each item in right half of table. 

Invariant 2.  1 credit with each empty slot in left half of table.

Dynamic table demo:  insert and delete (accounting method)
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Dynamic table:  insert and delete (accounting method)

Insert.  Charge 3 credits (1 to insert; save 2 with item if in right half). 

Delete.  Charge 2 credits (1 to delete; save 1 in empty slot if in left half). 

 

Invariant 1.  2 credits with each item in right half of table. 

Invariant 2.  1 credit with each empty slot in left half of table. 

 

 

Theorem.  [via accounting method]  Starting from an empty dynamic table, 

any intermixed sequence of n INSERT and DELETE operations takes O(n) time.  

Pf.  

・Invariants ⇒  number of credits in data structure  ≥  0.  

・Amortized cost per operation ≤ 3.  

・Total actual cost of n operations  ≤  sum of amortized cost ≤ 3n.   ▪
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Dynamic table:  insert and delete (potential method)

Theorem.  [via potential method]  Starting from an empty dynamic table, 

any intermixed sequence of n INSERT and DELETE operations takes O(n) time. 

 

Pf sketch. 

・Let α(Di) = size(Di) / capacity(Di). 

・Define 

 

・Φ(D0) =  0, Φ(Di)  ≥  0.      [a potential function] 

・When α(Di) = 1/2, Φ(Di) = 0.    [zero potential after resizing] 

・When α(Di) = 1, Φ(Di) = size(Di).   [can pay for expansion] 

・When α(Di) = 1/4, Φ(Di) = size(Di).  [can pay for contraction] 

...
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�(Di) =

�
2 size(Di) � capacity(Di) B7 �(Di) � 1/2
1
2 capacity(Di) � size(Di) B7 �(Di) < 1/2


