

Appetizer

Goal. Design a data structure to support all operations in $O(1)$ time.

- $\operatorname{INIT}(n)$: create and return an initialized array (all zero) of length n.
- $\operatorname{Read}(A, i)$: return element i in array.
- Write(A, i, value): set element i in array to value.

Assumptions.

true in C or C++, but not Java

- Can malloc an uninitialized array of length n in $O(1)$ time.
- Given an array, can read or write element i in $O(1)$ time.

Remark. An array does INIT in $\Theta(n)$ time and Read and Write in $\Theta(1)$ time.

Data structures

Static problems. Given an input, produce an output.
Ex. Sorting, FFT, edit distance, shortest paths, MST, max-flow, ...

Dynamic problems. Given a sequence of operations (given one at a time), produce a sequence of outputs.
Ex. Stack, queue, priority queue, symbol table, union-find,

Algorithm. Step-by-step procedure to solve a problem.
Data structure. Way to store and organize data.
Ex. Array, linked list, binary heap, binary search tree, hash table, ...

Appetizer

Data structure. Three arrays $A[1 . . n], B[1 . . n]$, and $C[1 . . n]$, and an integer k.

- $A[i]$ stores the current value for READ (if initialized).
- $k=$ number of initialized entries.
- $C[j]=$ index of $j^{\text {th }}$ initialized element for $j=1, \ldots, k$.
- If $C[j]=i$, then $B[i]=j$ for $j=1, \ldots, k$.

Theorem. $A[i]$ is initialized iff both $1 \leq B[i] \leq k$ and $C[B[i]]=i$. Pf. Ahead.

$A[4]=99, A[6]=33, A[2]=22$, and $A[3]=55$ initialized in that order

Appetizer

> INIT (A, n)
> $k \leftarrow 0$.
> $A \leftarrow \operatorname{MALLOC}(n)$.
> $B \leftarrow \operatorname{MALLOC}(n)$.
> $C \leftarrow \operatorname{MALLOC}(n)$.

$\operatorname{READ}(A, i)$

IF (IS-InitiALIZED ($A[i])$) RETURN $A[i]$

ELSE
RETURN 0

IS-INITIALIZED (A, i)
IF $(1 \leq B[i] \leq k)$ and $(C[B[i]]=i)$
RETURN true.
ElsE
RETURN false.

WRITE ($A, i, v a l u e)$

IF (Is-InitiALIZED ($A[i])$) $A[i] \leftarrow$ value.
Else
$k \leftarrow k+1$.
$A[i] \leftarrow$ value.
$B[i] \leftarrow k$.
$C[k] \leftarrow i$

Appetizer

Theorem. $A[i]$ is initialized iff both $1 \leq B[i] \leq k$ and $C[B[i]]=i$.
Pf. \Leftarrow

- Suppose $A[i]$ is uninitialized.
- If $B[i]<1$ or $B[i]>k$, then $A[i]$ clearly uninitialized
- If $1 \leq B[i] \leq k$ by coincidence, then we still can't have $C[B[i]]=i$ because none of the entries $C[1 . . k]$ can equal i.

$A[4]=99, A[6]=33, A[2]=22$, and $A[3]=55$ initialized in that order

Appetizer

Theorem. $A[i]$ is initialized iff both $1 \leq B[i] \leq k$ and $C[B[i]]=i$.
Pf. \Rightarrow

- Suppose $A[i]$ is the $j^{\text {th }}$ entry to be initialized.
- Then $C[j]=i$ and $B[i]=j$.
- Thus, $C[B[i]]=i$

$A[4]=99, A[6]=33, A[2]=22$, and $A[3]=55$ initialized in that order

Amortized analysis

Worst-case analysis. Determine worst-case running time of a data structure operation as function of the input size n.
can be too pessimistic if the only way to encounter an expensive operation is when encounter an expensive operation is when

Amortized analysis. Determine worst-case running time of a sequence of n data structure operations.

Ex. Starting from an empty stack implemented with a dynamic table, any sequence of n push and pop operations takes $O(n)$ time in the worst case.

Amortized Analysis

- binary counter
> multi-pop stack
- dynamic table

Amortized analysis: applications

- Splay trees
- Dynamic table.
- Fibonacci heaps.
- Garbage collection
- Move-to-front list updating.
- Push-relabel algorithm for max flow
- Path compression for disjoint-set union.
- Structural modifications to red-black trees.
- Security, databases, distributed computing, ..

amortized computational complexity
robert endre tarian

Binary counter

Goal. Increment a k-bit binary counter $\left(\bmod 2^{k}\right)$. Representation. $A[j]=j^{\text {th }}$ least significant bit of counter.

Counter value	
0	00000000
1	0000000001
2	0 0000000010
3	0000000011
4	0000001100
5	000000011011
6	00000001110
7	000000011111
8	0 0000010000
9	00000010011
10	0 0000101010
11	
12	0 0 0 0 1 1 000
13	00000111011
14	00000011110
15	00001111
16	0000100000

[^0]
Binary counter

Goal. Increment a k-bit binary counter $\left(\bmod 2^{k}\right)$.
Representation. $A[j]=j^{\text {th }}$ least significant bit of counter.

C
Counter
value

0

Theorem. Starting from the zero counter, a sequence of n INCREMENT operations flips $O(n k)$ bits. \qquad overly pessimistic upper bound
Pf. At most k bits flipped per increment. -

Binary counter: aggregate method

Starting from the zero counter, in a sequence of n INCREMENT operations:

- Bit 0 flips n times.
- Bit 1 flips $\lfloor n / 2\rfloor$ times.
- Bit 2 flips $\lfloor n / 4\rfloor$ times.
- ...

Theorem. Starting from the zero counter, a sequence of n InCREMENT operations flips $O(n)$ bits.
Pf.

- Bit j flips $\left\lfloor n / 2^{j}\right\rfloor$ times
- The total number of bits flipped is $\sum_{j=0}^{k-1}\left\lfloor\frac{n}{2^{j}}\right\rfloor<n \sum_{j=0}^{\infty} \frac{1}{2^{j}}$

$$
=2 n \quad \text { • }
$$

Remark. Theorem may be false if initial counter is not zero.

Aggregate method (brute force)

Aggregate method. Analyze cost of a sequence of operations.


```
    llllllllll
    lll
    0}000000000001
    0}000000001100
```



```
    0}0000000001111
    0}00000000011:1%
    0}000000110000
    0}00000001010001
    -
    0
    [\begin{array}{llllllllll}{0}&{0}&{0}&{0}&{1}&{0}&{1}&{1}\\{0}&{0}&{0}&{0}&{1}&{1}&{0}&{0}\end{array})
    Cllllllllllll
```



```
    15
    * (00000
```


Accounting method (banker's method)

Assign (potentially) different charges to each operation.

- $D_{i}=$ data structure after $i^{\text {th }}$ operation.
- $c_{i}=$ actual cost of $i^{\text {th }}$ operation.
- $\hat{c}_{i}=$ amortized cost of $i^{\text {th }}$ operation $=$ amount we charge operation i.
- When $\hat{c}_{i}>c_{i}$, we store credits in data structure D_{i} to pay for future ops when $\hat{c}_{i}<c_{i}$, we consume credits in data structure D_{i}.
- Initial data structure D_{0} starts with 0 credits.

Credit invariant. The total number of credits in the data structure ≥ 0.

$$
\sum_{i=1} \hat{c}_{i}-\sum_{i=1} c_{i} \geq 0 \longleftarrow \begin{gathered}
\text { our job is to choose suitable amortize } \\
\text { costs so that this invariant holds }
\end{gathered}
$$

Accounting method (banker's method)

Assign (potentially) different charges to each operation.

- $D_{i}=$ data structure after $i^{\text {th }}$ operation.
can be more or less
- $c_{i}=$ actual cost of $i^{\text {th }}$ operation.
- $\hat{c}_{i}=$ amortized cost of $i^{\text {th }}$ operation $=$ amount we charge operation i.
- When $\hat{c}_{i}>c_{i}$, we store credits in data structure D_{i} to pay for future ops; when $\hat{c}_{i}<c_{i}$, we consume credits in data structure D_{i}.
- Initial data structure D_{0} starts with 0 credits.

Credit invariant. The total number of credits in the data structure ≥ 0.

$$
\sum_{i=1} \hat{c}_{i}-\sum_{i=1} c_{i} \geq 0
$$

Theorem. Starting from the initial data structure D_{0}, the total actual cost of any sequence of n operations is at most the sum of the amortized costs. Pf. The amortized cost of the sequence of n operations is: $\sum_{i=1}^{n} \hat{c}_{i} \geq \sum_{i=1}^{n} c_{i}$. credit invariant Intuition. Measure running time in terms of credits (time = money).

Binary counter: accounting method

Credits. One credit pays for a bit flip.
Invariant. Each 1 bit has one credit; each 0 bit has zero credits.

Accounting.

- Flip bit j from 0 to 1 : charge 2 credits (use one and save one in bit j).
- Flip bit j from 1 to 0 : pay for it with the 1 credit saved in bit j.
increment

Binary counter: accounting method

Credits. One credit pays for a bit flip.
Invariant. Each 1 bit has one credit; each 0 bit has zero credits.

Accounting.

- Flip bit j from 0 to 1 : charge 2 credits (use one and save one in bit j).
increment

Binary counter: accounting method

Credits. One credit pays for a bit flip.
Invariant. Each 1 bit has one credit; each 0 bit has zero credits.

Accounting.

- Flip bit j from 0 to 1 : charge 2 credits (use one and save one in bit j).
- Flip bit j from 1 to 0 : pay for it with the 1 credit saved in bit j.

Binary counter: accounting method

Credits. One credit pays for a bit flip.
Invariant. Each 1 bit has one credit; each 0 bit has zero credits.

Accounting.

- Flip bit j from 0 to 1 : charge 2 credits (use one and save one in bit j).
- Flip bit j from 1 to 0 : pay for it with the 1 credit saved in bit j.

Theorem. Starting from the zero counter, a sequence of n INCREMENT operations flips $O(n)$ bits.

Pf. \downarrow\begin{tabular}{c}

the rightmost 0 bit
(unless counter overflows)

\hline
\end{tabular}

- Each InCREMENT operation flips at most one 0 bit to a 1 bit,
so the amortized cost per InCREMENT ≤ 2.
- Invariant \Rightarrow number of credits in data structure ≥ 0.
- Total actual cost of n operations \leq sum of amortized costs $\leq 2 n$.

$$
\underset{\text { method theorem }}{\uparrow}
$$

Potential method (physicist's method)

Potential function. $\Phi\left(D_{i}\right)$ maps each data structure D_{i} to a real number s.t.:

- $\Phi\left(D_{0}\right)=0$.
- $\Phi\left(D_{i}\right) \geq 0$ for each data structure D_{i}.

Actual and amortized costs.

- $c_{i}=$ actual cost of $i^{t h}$ operation.
- $\hat{c}_{i}=c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)=$ amortized cost of $i^{\text {th }}$ operation.

Theorem. Starting from the initial data structure D_{0}, the total actual cost of any sequence of n operations is at most the sum of the amortized costs.
Pf. The amortized cost of the sequence of operations is:

$$
\begin{aligned}
\sum_{i=1}^{n} \hat{c}_{i} & =\sum_{i=1}^{n}\left(c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)\right) \\
& =\sum_{i=1}^{n} c_{i}+\Phi\left(D_{n}\right)-\Phi\left(D_{0}\right) \\
& \geq \sum_{i=1}^{n} c_{i}
\end{aligned}
$$

Potential method (physicist's method)

Potential function. $\Phi\left(D_{i}\right)$ maps each data structure D_{i} to a real number s.t.:

- $\Phi\left(D_{0}\right)=0$.
- $\Phi\left(D_{i}\right) \geq 0$ for each data structure D_{i}.

Actual and amortized costs.

- $c_{i}=$ actual cost of $i^{\text {th }}$ operation.
- $\hat{c}_{i}=c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)=$ amortized cost of $i^{\text {th }}$ operation.
our job is to choose
a potential function
so that the amortized cost

Binary counter: potential method

Potential function. Let $\Phi(D)=$ number of 1 bits in the binary counter D.

- $\Phi\left(D_{0}\right)=0$.
- $\Phi\left(D_{i}\right) \geq 0$ for each D_{i}.

ncrement

$$
\begin{array}{llllll|l|l|l|}
\hline 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}
$$

Binary counter: potential method

Potential function. Let $\Phi(D)=$ number of 1 bits in the binary counter D.

- $\Phi\left(D_{0}\right)=0$.
- $\Phi\left(D_{i}\right) \geq 0$ for each D_{i}.
increment

7	6	5	4	3	2	1
0	1	0	1	0	0	0

Binary counter: potential method

Potential function. Let $\Phi(D)=$ number of 1 bits in the binary counter D.

- $\Phi\left(D_{0}\right)=0$.
- $\Phi\left(D_{i}\right) \geq 0$ for each D_{i}.

Theorem. Starting from the zero counter, a sequence of n INCREMENT operations flips $O(n)$ bits.
Pf.

- Suppose that the $i^{\text {th }}$ InCREMENT operation flips t_{i} bits from 1 to 0 .
- The actual cost $c_{i} \leq t_{i}+1 . \longleftarrow \begin{gathered}\text { operation flips at most one bit from } 0 \text { to } 1 \\ \text { (no bits flipped to } 1 \text { when counter overflows) }\end{gathered}$
- The amortized cost $\hat{c}_{i}=c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)$
$\leq c_{i}+1-t_{i} \longleftarrow$ potential decreases by 1 for t_{i} bits flipped from 1 to 0 ≤ 2. and increases by 1 for bit flipped from 0 to 1
- Total actual cost of n operations \leq sum of amortized costs $\leq 2 n$. $\stackrel{\uparrow}{\text { nethod theorem }}$

Binary counter: potential method

Potential function. Let $\Phi(D)=$ number of 1 bits in the binary counter D.

- $\Phi\left(D_{0}\right)=0$.
- $\Phi\left(D_{i}\right) \geq 0$ for each D_{i}.

7	6	5	4	3	2	1
	1	0	1	0	0	0

Famous potential functions

Fibonacci heaps. $\Phi(H)=2 \operatorname{trees}(H)+2 \operatorname{marks}(H)$

Splay trees. $\quad \Phi(T)=\sum_{x \in T}\left\lfloor\log _{2} \operatorname{size}(x)\right\rfloor$

Move-to-front. $\Phi(L)=2$ inversions $\left(L, L^{*}\right)$

Preflow-push. $\Phi(f)=\sum_{v: \operatorname{excess}(v)>0} \operatorname{height}(v)$

Red-black trees. $\quad \Phi(T)=\sum_{x \in T} w(x)$

$$
w(x)= \begin{cases}0 & \text { if } x \text { is red } \\ 1 & \text { if } x \text { is black and has no red children } \\ 0 & \text { if } x \text { is black and has one red child } \\ 2 & \text { if } x \text { is black and has two red children }\end{cases}
$$

Multipop stack

Amortized Analysis

binary counter

- multi-pop stack
- dynamic table

Goal. Support operations on a set of elements:

- $\operatorname{Push}(S, x)$: add element x to stack S.
- $\operatorname{POP}(S)$: remove and return the most-recently added element.
- Multi-Pop (S, k) : remove the most-recently added k elements.

$$
\begin{aligned}
& \operatorname{MULTI}-\operatorname{Pop}(S, k) \\
& \text { FOR } i=1 \text { TO } k \\
& \quad \operatorname{PoP}(S) .
\end{aligned}
$$

Exceptions. We assume Pop throws an exception if stack is empty.

Multipop stack: aggregate method

Goal. Support operations on a set of elements:

- $\operatorname{Push}(S, x)$: add element x to stack S.
- $\operatorname{POP}(S)$: remove and return the most-recently added element.
- Multi-Pop (S, k) : remove the most-recently added k elements.

Theorem. Starting from an empty stack, any intermixed sequence of n Push, Pop, and Multi-Pop operations takes $O(n)$ time.

Pf.

- An element is popped at most once for each time that it is pushed.
- There are $\leq n$ PUSH operations.
- Thus, there are $\leq n$ Pop operations (including those made within MuLtI-Pop).

Multipop stack: accounting method

Credits. 1 credit pays for either a PUSH or Pop.
Invariant. Every element on the stack has 1 credit.

Accounting.

- $\operatorname{PuSH}(S, x)$: charge 2 credits.
- use 1 credit to pay for pushing x now
- store 1 credit to pay for popping x at some point in the future
- $\operatorname{POP}(S)$: charge 0 credits.
- MultiPop (S, k) : charge 0 credits.

Theorem. Starting from an empty stack, any intermixed sequence of n Push, Pop, and Multi-Pop operations takes $O(n)$ time. Pf.

- Invariant \Rightarrow number of credits in data structure ≥ 0.
- Amortized cost per operation ≤ 2.
- Total actual cost of n operations \leq sum of amortized costs $\leq 2 n$. \uparrow

Multipop stack: potential method

Potential function. Let $\Phi(D)=$ number of elements currently on the stack.

- $\Phi\left(D_{0}\right)=0$.
- $\Phi\left(D_{i}\right) \geq 0$ for each D_{i}.

Theorem. Starting from an empty stack, any intermixed sequence of n Push, POP, and Multi-Pop operations takes $O(n)$ time.

Pf. [Case 2: pop]

- Suppose that the $i^{\text {th }}$ operation is a Pop.
- The actual cost $c_{i}=1$.
- The amortized cost $\hat{c}_{i}=c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)=1-1=0$.

Multipop stack: potential method

Potential function. Let $\Phi(D)=$ number of elements currently on the stack.

- $\Phi\left(D_{0}\right)=0$.
- $\Phi\left(D_{i}\right) \geq 0$ for each D_{i}.

Theorem. Starting from an empty stack, any intermixed sequence of n Push, Pop, and Multi-Pop operations takes $O(n)$ time.

Pf. [Case 1: push]

- Suppose that the $i^{\text {th }}$ operation is a Push.
- The actual cost $c_{i}=1$.
- The amortized cost $\hat{c}_{i}=c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)=1+1=2$.

Multipop stack: potential method

Potential function. Let $\Phi(D)=$ number of elements currently on the stack.

- $\Phi\left(D_{0}\right)=0$.
- $\Phi\left(D_{i}\right) \geq 0$ for each D_{i}.

Theorem. Starting from an empty stack, any intermixed sequence of n Push, Pop, and Multi-Pop operations takes $O(n)$ time.

Pf. [Case 3: multi-pop]

- Suppose that the $i^{\text {th }}$ operation is a Multi-Pop of k objects.
- The actual cost $c_{i}=k$.
- The amortized cost $\hat{c}_{i}=c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)=k-k=0$.

Multipop stack: potential method

Potential function. Let $\Phi(D)=$ number of elements currently on the stack.

- $\Phi\left(D_{0}\right)=0$.
- $\Phi\left(D_{i}\right) \geq 0$ for each D_{i}.

Theorem. Starting from an empty stack, any intermixed sequence of n PUSH, POP, and Multi-Pop operations takes $O(n)$ time.

Pf. [putting everything together]

- Amortized cost $\hat{c}_{i} \leq 2$. $\longleftarrow 2$ for push; 0 for pop and multi-pop
- Sum of amortized costs \hat{c}_{i} of the n operations $\leq 2 n$.
- Total actual cost \leq sum of amortized cost $\leq 2 n$. -

$$
\underset{\text { potential method theorem }}{\uparrow}
$$

Dynamic table

Goal. Store items in a table (e.g., for hash table, binary heap).

- Two operations: Insert and Delete.
- too many items inserted \Rightarrow expand table.
- too many items deleted \Rightarrow contract table.
- Requirement: if table contains m items, then space $=\Theta(m)$.

Theorem. Starting from an empty dynamic table, any intermixed sequence of n INSERT and Delete operations takes $O\left(n^{2}\right)$ time.

Pf. Each InSERT or Delete takes $O(n)$ time. - $\begin{gathered}\text { overly pessimistic } \\ \text { upper bound }\end{gathered}$

Amortized Analysis

- binary counter
- multi-pop stack
- dynamic table

Section 17.4

Dynamic table: insert only

- When inserting into an empty table, allocate a table of capacity 1 .
- When inserting into a full table, allocate a new table of twice the capacity and copy all items.
- Insert item into table.

insert	old capacity	new capacity	insert cost	copy cost
1	0	1	1	-
2	1	2	1	1
3	2	4	1	2
4	4	4	1	-
5	4	8	1	4
6	8	8	1	-
7	8	8	1	-
8	8	8	1	-
9	8	16	1	8
\vdots	\vdots	\vdots	\vdots	\vdots

Cost model. Number of items written (due to insertion or copy).

Dynamic table: insert only (aggregate method)

Theorem. [via aggregate method] Starting from an empty dynamic table, any sequence of n INSERT operations takes $O(n)$ time.

Pf. Let c_{i} denote the cost of the $i^{t h}$ insertion.

$$
c_{i}= \begin{cases}i & \text { if } i-1 \text { is an exact power of } 2 \\ 1 & \text { otherwise }\end{cases}
$$

Starting from empty table, the cost of a sequence of n INSERT operations is:

$$
\begin{aligned}
\sum_{i=1}^{n} c_{i} & \leq n+\sum_{j=0}^{\lfloor\lg n\rfloor} 2^{j} \\
& <n+2 n \\
& =3 n
\end{aligned}
$$

Dynamic table: insert only (accounting method)

Insert. Charge 3 credits (use 1 credit to insert; save 2 with new item).

Invariant. 2 credits with each item in right half of table; none in left half. Pf. [by induction]

- Each newly inserted item gets 2 credits slight cheat if table capacity $=1$
- these k credits pay for the work needed to copy the k items
- now, all k items are in left half of table (and have 0 credits)

Theorem. [via accounting method] Starting from an empty dynamic table, any sequence of n INSERT operations takes $O(n)$ time.
Pf.

- Invariant \Rightarrow number of credits in data structure ≥ 0.
- Amortized cost per INSERT = 3 .
- Total actual cost of n operations \leq sum of amortized cost $\leq 3 n$.

$$
\underset{\text { accounting method theorem }}{\uparrow}
$$

Dynamic table demo: insert only (accounting method)

Insert. Charge 3 credits (use 1 credit to insert; save 2 with new item). Invariant. 2 credits with each item in right half of table; none in left half.
insert N
capacity $=16$

Dynamic table: insert only (potential method)

Theorem. [via potential method] Starting from an empty dynamic table, any sequence of n INSERT operations takes $O(n)$ time.

Pf. Let $\Phi\left(D_{i}\right)=\underset{\substack{\text { number of } \\ \text { elements }}}{\operatorname{size}\left(D_{i}\right)}-\underset{\substack{\text { capacity of } \\ \text { array }}}{\text { capacity }}\left(D_{i}\right)$.

- $\Phi\left(D_{0}\right)=0$.
- $\Phi\left(D_{i}\right) \geq 0$ for each $D_{i} . \longleftarrow$ immediately after doubling $\operatorname{capacity}\left(D_{i}\right)=2 \operatorname{size}\left(D_{i}\right)$
size $=6$ capacity $=8$ $\Phi=4$

Dynamic table: insert only (potential method)

Theorem. [via potential method] Starting from an empty dynamic table, any sequence of n INSERT operations takes $O(n)$ time.

Pf. Let $\Phi\left(D_{i}\right)=2 \operatorname{size}\left(D_{i}\right)-\operatorname{capacity}\left(D_{i}\right)$.

- $\Phi\left(D_{0}\right)=0$.
- $\Phi\left(D_{i}\right) \geq 0$ for each D_{i}.

Case 0. [first insertion]

- Actual cost $c_{1}=1$.
- $\Phi\left(D_{1}\right)-\Phi\left(D_{0}\right)=\left(2 \operatorname{size}\left(D_{1}\right)-\operatorname{capacity}\left(D_{1}\right)\right)-\left(2 \operatorname{size}\left(D_{0}\right)-\operatorname{capacity}\left(D_{0}\right)\right)$

$$
=1 \text {. }
$$

- Amortized cost $\hat{c}_{1}=c_{1}+\left(\Phi\left(D_{1}\right)-\Phi\left(D_{0}\right)\right)$

$$
\begin{aligned}
& =1+1 \\
& =2 .
\end{aligned}
$$

Dynamic table: insert only (potential method)

Theorem. [via potential method] Starting from an empty dynamic table, any sequence of n INSERT operations takes $O(n)$ time.

- $\Phi\left(D_{0}\right)=0$.
- $\Phi\left(D_{i}\right) \geq 0$ for each D_{i}.

Case 2. [array expansion] capacity $\left(D_{i}\right)=2 \operatorname{capacity}\left(D_{i-1}\right)$.

- Actual cost $c_{i}=1+\operatorname{capacity}\left(D_{i-1}\right)$.
- $\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)=\left(2 \operatorname{size}\left(D_{i}\right)-\operatorname{capacity}\left(D_{i}\right)\right)-\left(2 \operatorname{size}\left(D_{i-1}\right)-\operatorname{capacity}\left(D_{i-1}\right)\right)$

$$
\begin{aligned}
& =2-\operatorname{capacity}\left(D_{i}\right)+\operatorname{capacity}\left(D_{i-1}\right) \\
& =2-\operatorname{capacity}\left(D_{i-1}\right)
\end{aligned}
$$

- Amortized cost $\hat{c}_{i}=c_{i}+\left(\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)\right)$

$$
\begin{aligned}
& =1+\operatorname{capacity}\left(D_{i-1}\right)+\left(2-\operatorname{capacity}\left(D_{i-1}\right)\right) \\
& =3
\end{aligned}
$$

Dynamic table: insert only (potential method)

Theorem. [via potential method] Starting from an empty dynamic table, any sequence of n INSERT operations takes $O(n)$ time.

Pf. Let $\Phi\left(D_{i}\right)=2 \operatorname{size}\left(D_{i}\right)-\operatorname{capacity}\left(D_{i}\right)$.

- $\Phi\left(D_{0}\right)=0$.
- $\Phi\left(D_{i}\right) \geq 0$ for each D_{i}.

Case 1. [no array expansion] capacity $\left(D_{i}\right)=\operatorname{capacity}\left(D_{i-1}\right)$.

- Actual cost $c_{i}=1$.
- $\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)=\left(2 \operatorname{size}\left(D_{i}\right)-\operatorname{capacity}\left(D_{i}\right)\right)-\left(2 \operatorname{size}\left(D_{i-1}\right)-\operatorname{capacity}\left(D_{i-1}\right)\right)$ $=2$.
- Amortized cost $\hat{c}_{i}=c_{i}+\left(\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)\right)$

$$
=1+2
$$

$$
=3
$$

Dynamic table: insert only (potential method)

Theorem. [via potential method] Starting from an empty dynamic table, any sequence of n INSERT operations takes $O(n)$ time.

Pf. Let $\Phi\left(D_{i}\right)=2 \operatorname{size}\left(D_{i}\right)-\operatorname{capacity}\left(D_{i}\right)$.

- $\Phi\left(D_{0}\right)=0$.
- $\Phi\left(D_{i}\right) \geq 0$ for each D_{i}.

[putting everything together]

- Amortized cost per operation $\hat{c}_{i} \leq 3$.
- Total actual cost of n operations \leq sum of amortized cost $\leq 3 n$. \uparrow

Dynamic table: doubling and halving

Thrashing.

- INSERT: when inserting into a full table, double capacity.
- Delete: when deleting from a table that is $1 / 2$-full, halve capacity.

Efficient solution.

- When inserting into an empty table, initialize table size to 1 ; when deleting from a table of size 1 , free the table.
- INSERT: when inserting into a full table, double capacity.
- Delete: when deleting from a table that is $1 / 4$-full, halve capacity.

Memory usage. A dynamic table uses $\Theta(n)$ memory to store n items.
Pf. Table is always between 25% and 100% full.

Dynamic table: insert and delete (accounting method)

Insert. Charge 3 credits (1 to insert; save 2 with item if in right half). Delete. Charge 2 credits (1 to delete; save 1 in empty slot if in left half).
discard any existing or extra credits

Invariant 1. 2 credits with each item in right half of table. \longleftarrow to pay for expansion Invariant 2. 1 credit with each empty slot in left half of table. \longleftarrow to pay for contraction

Theorem. [via accounting method] Starting from an empty dynamic table, any intermixed sequence of n INSERT and Delete operations takes $O(n)$ time. Pf.

- Invariants \Rightarrow number of credits in data structure ≥ 0.
- Amortized cost per operation ≤ 3.
- Total actual cost of n operations \leq sum of amortized cost $\leq 3 n$.
accounting method theorem

Dynamic table demo: insert and delete (accounting method)

Insert. Charge 3 credits (1 to insert; save 2 with item if in right half).
Delete. Charge 2 credits (1 to delete; save 1 in empty slot if in left half).

Invariant 1. 2 credits with each item in right half of table. Invariant 2. 1 credit with each empty slot in left half of table.
delete M

Dynamic table: insert and delete (potential method)

Theorem. [via potential method] Starting from an empty dynamic table, any intermixed sequence of n INSERT and DeLETE operations takes $O(n)$ time.

Pf sketch.

- Let $\alpha\left(D_{i}\right)=\operatorname{size}\left(D_{i}\right) / \operatorname{capacity}\left(D_{i}\right)$
- Define $\Phi\left(D_{i}\right)= \begin{cases}2 \operatorname{size}\left(D_{i}\right)-\operatorname{capacity}\left(D_{i}\right) & \text { if } \alpha\left(D_{i}\right) \geq 1 / 2 \\ \frac{1}{2} \operatorname{capacity}\left(D_{i}\right)-\operatorname{size}\left(D_{i}\right) & \text { if } \alpha\left(D_{i}\right)<1 / 2\end{cases}$
- $\Phi\left(D_{0}\right)=0, \Phi\left(D_{i}\right) \geq 0$. [a potential function]
- When $\alpha\left(D_{i}\right)=1 / 2, \Phi\left(D_{i}\right)=0$ [zero potential after resizing]
- When $\alpha\left(D_{i}\right)=1, \Phi\left(D_{i}\right)=\operatorname{size}\left(D_{i}\right)$. [can pay for expansion]
- When $\alpha\left(D_{i}\right)=1 / 4, \Phi\left(D_{i}\right)=\operatorname{size}\left(D_{i}\right)$. [can pay for contraction]

[^0]: Cost model. Number of bits flipped.

