

13. RANDOMIZED Algorithms

- contention resolution
- global min cut
- linearity of expectation
- max 3-satisfiability
, universal hashing
- Chernoff bounds
- load balancing

Randomization

Algorithmic design patterns.

- Greedy.
- Divide-and-conquer.
- Dynamic programming.
- Network flow.
- Randomization.
in practice, access to a pseudo-random number generator
Randomization. Allow fair coin flip in unit time.

Why randomize? Can lead to simplest, fastest, or only known algorithm for a particular problem.

Ex. Symmetry-breaking protocols, graph algorithms, quicksort, hashing, load balancing, closest pair, Monte Carlo integration, cryptography,

13. Randomized Algorithms

- contention resolution
- global min cut
- linearity of expectation
- max 3-satisfiabilit,
- universal hashing
- Chernoff bounds
- load balancing

Contention resolution in a distributed system

Contention resolution. Given n processes P_{1}, \ldots, P_{n}, each competing for access to a shared database. If two or more processes access the database simultaneously, all processes are locked out. Devise protocol to ensure all processes get through on a regular basis.

Restriction. Processes can't communicate.

Challenge. Need symmetry-breaking paradigm.

Contention resolution: randomized protocol

Protocol. Each process requests access to the database at time t with probability $p=1 / n$.

Claim. Let $S[i, t]=$ event that process i succeeds in accessing the database at time t. Then $1 /(e \cdot n) \leq \operatorname{Pr}[S(i, t)] \leq 1 /(2 n)$.

Pf. By independence, $\operatorname{Pr}[S(i, t)]=p(1-p)^{n-1}$.

- Setting $p=1 / n$, we have $\operatorname{Pr}[S(i, t)]=1 / n \underbrace{(1-1 / n)^{n-1}}_{\text {between } 1 / \text { e and } 1 / 2}$. -

Useful facts from calculus. As n increases from 2, the function:

- $(1-1 / n)^{n}$ converges monotonically from $1 / 4$ up to $1 / e$.
- $(1-1 / n)^{n-1}$ converges monotonically from $1 / 2$ down to $1 / e$.

Contention resolution: randomized protocol

Claim. The probability that process i fails to access the database in en rounds is at most $1 / e$. After $e \cdot n(c \ln n)$ rounds, the probability $\leq n^{-c}$.

Pf. Let $F[i, t]=$ event that process i fails to access database in rounds 1 through t . By independence and previous claim, we have $\operatorname{Pr}[F[i, t]] \leq(1-1 /(e n))^{t}$.

- Choose $t=\lceil e \cdot n\rceil$:

$$
\operatorname{Pr}[F(i, t)] \leq\left(1-\frac{1}{e n}\right)^{[e n]} \leq\left(1-\frac{1}{e n}\right)^{e n} \leq \frac{1}{e}
$$

- Choose $t=\lceil e \cdot n\rceil\lceil c \ln n\rceil$:

$$
\operatorname{Pr}[F(i, t)] \leq\left(\frac{1}{e}\right)^{c \ln n}=n^{-c}
$$

Contention resolution: randomized protocol

Claim. The probability that all processes succeed within $2 \mathrm{e} \cdot \mathrm{n} \ln \mathrm{n}$ rounds is $\geq 1-1 / n$.

Pf. Let $F[t]=$ event that at least one of the n processes fails to access database in any of the rounds 1 through t.

$$
\operatorname{Pr}[F[t]]=\operatorname{Pr}\left[\bigcup_{i=1}^{n} F[i, t]\right] \underset{\uparrow}{\substack{\text { union bound }}} \underset{\substack{i=1}}{\substack{n \\ \text { previous slide }}} \operatorname{Pr}[F[i, t]] \leq n\left(1-\frac{1}{e n}\right)^{t}
$$

- Choosing $t=2\lceil e n\rceil\lceil c \ln n\rceil$ yields $\operatorname{Pr}[F[t]] \leq n \cdot n^{-2}=1 / n$. -

Union bound. Given events $E_{1}, \ldots, E_{n}, \quad \operatorname{Pr}\left[\bigcup_{i=1}^{n} E_{i}\right] \leq \sum_{i=1}^{n} \operatorname{Pr}\left[E_{i}\right]$

13. Randomized Algorithms

- contention resolution
- global min cut
- linearity of expectation
- max 3-satisfiability
- universal hashing
- Chernoff bounds
load balancing

Global minimum cut

Global min cut. Given a connected, undirected graph $G=(V, E)$, find a cut (A, B) of minimum cardinality.

Applications. Partitioning items in a database, identify clusters of related documents, network reliability, network design, circuit design, TSP solvers.

Network flow solution.

- Replace every edge (u, v) with two antiparallel edges (u, v) and (v, u).
- Pick some vertex s and compute min $s-v$ cut separating s from each other node $v \in V$.

False intuition. Global min-cut is harder than min s - t cut.

Contraction algorithm

Contraction algorithm. [Karger 1995]

- Pick an edge $e=(u, v)$ uniformly at random.
- Contract edge e.
- replace u and v by single new super-node w
- preserve edges, updating endpoints of u and v to w
- keep parallel edges, but delete self-loops
- Repeat until graph has just two nodes u_{1} and v_{1}.
- Return the cut (all nodes that were contracted to form V_{1}).

Contraction algorithm

Contraction algorithm. [Karger 1995]

- Pick an edge $e=(u, v)$ uniformly at random.
- Contract edge e.
- replace u and v by single new super-node w
- preserve edges, updating endpoints of u and v to w
- keep parallel edges, but delete self-loops
- Repeat until graph has just two nodes u_{1} and v_{1}.
- Return the cut (all nodes that were contracted to form v_{1}).

Contraction algorithm

Claim. The contraction algorithm returns a min cut with prob $\geq 2 / n^{2}$.

Pf. Consider a global min-cut $\left(A^{*}, B^{*}\right)$ of G.

- Let F^{*} be edges with one endpoint in A^{*} and the other in B^{*}.
- Let $k=\left|F^{*}\right|=$ size of min cut.
- In first step, algorithm contracts an edge in F^{*} probability $k / I E$.
- Every node has degree $\geq k$ since otherwise (A^{*}, B^{*}) would not be a min-cut $\Rightarrow|E| \geq 1 / 2 k n \Leftrightarrow k /|E| \leq 2 / n$.
- Thus, algorithm contracts an edge in F^{*} with probability $\leq 2 / n$.

Contraction algorithm

Claim. The contraction algorithm returns a min cut with prob $\geq 2 / n^{2}$.

Pf. Consider a global min-cut $\left(A^{*}, B^{*}\right)$ of G.

- Let F^{*} be edges with one endpoint in A^{*} and the other in B^{*}.
- Let $k=\left|F^{*}\right|=$ size of min cut.
- Let G^{\prime} be graph after j iterations. There are $n^{\prime}=n-j$ supernodes.
- Suppose no edge in F^{*} has been contracted. The min-cut in G^{\prime} is still k.
- Since value of min-cut is $k,\left|E^{\prime}\right| \geq 1 / 2 k n^{\prime} \Leftrightarrow k /\left|E^{\prime}\right| \leq 2 / n^{\prime}$.
- Thus, algorithm contracts an edge in F^{*} with probability $\leq 2 / n^{\prime}$.
- Let $E_{j}=$ event that an edge in F^{*} is not contracted in iteration j.

$$
\begin{aligned}
\operatorname{Pr}\left[E_{1} \cap E_{2} \cdots \cap E_{n-2}\right] & =\operatorname{Pr}\left[E_{1}\right] \times \operatorname{Pr}\left[E_{2} \mid E_{1}\right] \times \cdots \times \operatorname{Pr}\left[E_{n-2} \mid E_{1} \cap E_{2} \cdots \cap E_{n-3}\right] \\
& \geq\left(1-\frac{2}{n}\right)\left(1-\frac{2}{n-1}\right) \cdots\left(1-\frac{2}{4}\right)\left(1-\frac{2}{3}\right) \\
& =\left(\frac{n-2}{n}\right)\left(\frac{n-3}{n-1}\right) \cdots\left(\frac{2}{4}\right)\left(\frac{1}{3}\right) \\
& =\frac{2}{n(n-1)} \\
& \geq \frac{2}{n^{2}}
\end{aligned}
$$

Contraction algorithm

Amplification. To amplify the probability of success, run the contraction algorithm many times.

Claim. If we repeat the contraction algorithm $n^{2} \ln n$ times, then the probability of failing to find the global min-cut is $\leq 1 / n^{2}$.

Pf. By independence, the probability of failure is at most

$$
\begin{gathered}
\left(1-\frac{2}{n^{2}}\right)^{n^{2} \ln n}=\left[\left(1-\frac{2}{n^{2}}\right)^{\frac{1}{2} n^{2}}\right]_{(1-1 / x)^{\times} \leq 1 / e}^{\leq} \leq\left(e^{-1}\right)^{2 \ln n}=\frac{1}{n^{2}} \\
\end{gathered}
$$

Contraction algorithm: example execution

Global min cut: context

Remark. Overall running time is slow since we perform $\Theta\left(n^{2} \log n\right)$ iterations and each takes $\Omega(m)$ time.

Improvement. [Karger-Stein 1996] $O\left(n^{2} \log ^{3} n\right)$.

- Early iterations are less risky than later ones: probability of contracting an edge in min cut hits 50% when $n / \sqrt{ } 2$ nodes remain.
- Run contraction algorithm until $n / \sqrt{ } 2$ nodes remain.
- Run contraction algorithm twice on resulting graph and return best of two cuts.

Extensions. Naturally generalizes to handle positive weights.

Best known. [Karger 2000] $O\left(m \log ^{3} n\right)$.
faster than best known max flow algorithm or deterministic global min cut algorithm

13. Randomized Algorithms

- contention resolution
- global min cut
- linearity of expectation
- max 3-satisfiability
- universal hashing
- Chernoff bounds
- load balancing

Expectation

Expectation. Given a discrete random variable X, its expectation $E[X]$ is defined by:

$$
E[X]=\sum_{j=0}^{\infty} j \operatorname{Pr}[X=j]
$$

Waiting for a first success. Coin is heads with probability p and tails with probability $1-p$. How many independent flips X until first heads?

Expectation: łwo properties

Useful property. If X is a $0 / 1$ random variable, $E[X]=\operatorname{Pr}[X=1]$.
Pf. $E[X]=\sum_{j=0}^{\infty} j \cdot \operatorname{Pr}[X=j]=\sum_{j=0}^{1} j \cdot \operatorname{Pr}[X=j]=\operatorname{Pr}[X=1]$

Linearity of expectation. Given two random variables X and Y defined over the same probability space, $E[X+Y]=E[X]+E[Y]$.

Benefit. Decouples a complex calculation into simpler pieces.

Guessing cards

Game. Shuffle a deck of n cards; turn them over one at a time; try to guess each card.

Memoryless guessing. No psychic abilities; can't even remember what's been turned over already. Guess a card from full deck uniformly at random.

Claim. The expected number of correct guesses is 1.

Pf. [surprisingly effortless using linearity of expectation]

- Let $X_{i}=1$ if $i^{\text {th }}$ prediction is correct and 0 otherwise.
- Let $X=$ number of correct guesses $=X_{1}+\ldots+X_{n}$.
- $E\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]=1 / n$.
- $E[X]=E\left[X_{1}\right]+\ldots+E\left[X_{n}\right]=1 / n+\ldots+1 / n=1$. •
\uparrow
linearity of expectation

Guessing cards

Game. Shuffle a deck of n cards; turn them over one at a time; try to guess each card.

Guessing with memory. Guess a card uniformly at random from cards not yet seen.

Claim. The expected number of correct guesses is $\Theta(\log n)$. Pf.

- Let $X_{i}=1$ if $i^{\text {th }}$ prediction is correct and 0 otherwise.
- Let $X=$ number of correct guesses $=X_{1}+\ldots+X_{n}$.
- $E\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]=1 /(n-(i-1))$.
- $E[X]=E\left[X_{1}\right]+\ldots+E\left[X_{n}\right]=1 / n+\ldots+1 / 2+1 / 1=H(n)$. -
\uparrow
linearity of expectation

```
    ln}(n+1)<H(n)<1+\operatorname{ln}
```


Coupon collector

Coupon collector. Each box of cereal contains a coupon. There are n different types of coupons. Assuming all boxes are equally likely to contain each coupon, how many boxes before you have ≥ 1 coupon of each type?

Claim. The expected number of steps is $\Theta(n \log n)$.
Pf.

- Phase $j=$ time between j and $j+1$ distinct coupons.
- Let $X_{j}=$ number of steps you spend in phase j.
- Let $X=$ number of steps in total $=X_{0}+X_{1}+\ldots+X_{n-1}$.

$$
\begin{gathered}
E[X]=\sum_{j=0}^{n-1} E\left[X_{j}\right]=\sum_{j=0}^{n-1} \frac{n}{n-j}=n \sum_{i=1}^{n} \frac{1}{i}=n H(n) \\
\uparrow \\
\Rightarrow \begin{array}{c}
\text { prob of success }=(\mathrm{n}-\mathrm{j}) / \mathrm{n}
\end{array} \\
\Rightarrow \text { expected waiting time }=\mathrm{n} /(\mathrm{n}-\mathrm{j})
\end{gathered}
$$

13. Randomized Algorithms

- contention resolution
- global min cut
- linearity of expectation
- max 3-satisfiability
, universal hashing
- Chernoff bounds
- load balancing

Maximum 3-satisfiability

Maximum 3-satisfiability. Given a 3-Sat formula, find a truth assignment that satisfies as many clauses as possible.

$$
\begin{aligned}
& C_{1}=x_{2} \vee \overline{x_{3}} \vee \overline{x_{4}} \\
& C_{2}=x_{2} \vee x_{3} \vee \overline{x_{4}} \\
& C_{3}=\overline{x_{1}} \vee x_{2} \vee x_{4} \\
& C_{4}=\overline{x_{1}} \vee \overline{x_{2}} \vee \frac{x_{3}}{C_{5}}=x_{1} \vee \overline{x_{2}} \vee \frac{x_{4}}{2}
\end{aligned}
$$

Remark. NP-hard optimization problem.

Simple idea. Flip a coin, and set each variable true with probability $1 / 2$, independently for each variable.

Maximum 3-satisfiability: analysis

Claim. Given a 3-SAT formula with k clauses, the expected number of clauses satisfied by a random assignment is $7 k / 8$.

Pf. Consider random variable $Z_{j}= \begin{cases}1 & \text { if clause } C_{j} \text { is satisfied } \\ 0 & \text { otherwise } .\end{cases}$

- Let $Z=$ number of clauses satisfied by random assignment.

$$
\begin{aligned}
& \begin{aligned}
E[Z] & =\sum_{j=1}^{k} E\left[Z_{j}\right] \\
\text { linearity of expectation } & =\sum_{j=1}^{k} \operatorname{Pr}\left[\text { clause } C_{j} \text { is satisfied }\right]
\end{aligned} \\
& =\frac{7}{8} k
\end{aligned}
$$

The probabilistic method

Corollary. For any instance of 3-SAT, there exists a truth assignment that satisfies at least a $7 / 8$ fraction of all clauses.

Pf. Random variable is at least its expectation some of the time.

Probabilistic method. [Paul Erdös] Prove the existence of a non-obvious property by showing that a random construction produces it with positive probability!

Maximum 3-satisfiability: analysis

Q. Can we turn this idea into a $7 / 8$-approximation algorithm?
A. Yes (but a random variable can almost always be below its mean).

Lemma. The probability that a random assignment satisfies $\geq 7 k / 8$ clauses is at least $1 /(8 k)$.

Pf. Let p_{j} be probability that exactly j clauses are satisfied; let p be probability that $\geq 7 k / 8$ clauses are satisfied.

$$
\begin{aligned}
\frac{7}{8} k=E[Z] & =\sum_{j \geq 0} j p_{j} \\
& =\sum_{j<7 k / 8} j p_{j}+\sum_{j 27 k / 8} j p_{j} \\
& \leq\left(\frac{7 k}{8}-\frac{1}{8}\right) \sum_{j<7 k / 8} p_{j}+k \sum_{j 27 k / 8} p_{j} \\
& \leq\left(\frac{7}{8} k-\frac{1}{8}\right) \cdot 1+k p
\end{aligned}
$$

Rearranging terms yields $p \geq 1 /(8 k)$.

Maximum 3-satisfiability: analysis

Johnson's algorithm. Repeatedly generate random truth assignments until one of them satisfies $\geq 7 k$ / 8 clauses.

Theorem. Johnson's algorithm is a 7/8-approximation algorithm.

Pf. By previous lemma, each iteration succeeds with probability ≥ 1 / (8 k).
By the waiting-time bound, the expected number of trials to find the satisfying assignment is at most $8 k$. -

Maximum satisfiability

Extensions.

- Allow one, two, or more literals per clause.
- Find max weighted set of satisfied clauses.

Theorem. [Asano-Williamson 2000] There exists a 0.784-approximation algorithm for MAX-SAT.

Theorem. [Karloff-Zwick 1997, Zwick+computer 2002] There exists a 7/8approximation algorithm for version of MAX-3-SAT in which each clause has at most 3 literals.

Theorem. [Håstad 1997] Unless $\mathbf{P}=\mathbf{N P}$, no ρ-approximation algorithm for MAX-3-SAt (and hence MAX-SAt) for any $\rho>7 / 8$.

Monte Carlo vs. Las Vegas algorithms

Monte Carlo. Guaranteed to run in poly-time, likely to find correct answer. Ex: Contraction algorithm for global min cut.

Las Vegas. Guaranteed to find correct answer, likely to run in poly-time.
Ex: Randomized quicksort, Johnson's MAX-3-SAT algorithm.

Remark. Can always convert a Las Vegas algorithm into Monte Carlo, but no known method (in general) to convert the other way.

RP and ZPP

RP. [Monte Carlo] Decision problems solvable with one-sided error in poly-time.

One-sided error.
can decrease probability of false negative
to 2^{-100} by 100 independent repetitions

- If the correct answer is yes, return yes with probability $\geq 1 / 2$.

ZPP. [Las Vegas] Decision problems solvable in expected poly-time.

Theorem. $\mathbf{P} \subseteq \mathbf{Z P P} \subseteq \mathbf{R P} \subseteq \mathbf{N P}$.

Fundamental open questions. To what extent does randomization help?
Does $\mathbf{P}=\mathbf{Z P P}$? Does ZPP = RP ? Does RP = NP ?

13. Randomized Algorithms

- contention resolution
- global min cut
- linearity of expectation
- max 3-satisfiability
- universal hashing
- Chernoff bounds
- load balancing

Dictionary data type

Dictionary. Given a universe U of possible elements, maintain a subset $S \subseteq U$ so that inserting, deleting, and searching in S is efficient.

Dictionary interface.

- create(): initialize a dictionary with $S=\varnothing$.
- $\operatorname{insert(u):~add~element~} u \in U$ to S.
- delete (u) : delete u from S (if u is currently in S).
- lookup(u): is u in S ?

Challenge. Universe U can be extremely large so defining an array of size $I U$ Is infeasible.

Applications. File systems, databases, Google, compilers, checksums, P2P networks, associative arrays, cryptography, web caching, etc.

Hashing

Hash function. $h: U \rightarrow\{0,1, \ldots, n-1\}$.

Hashing. Create an array a of length n. When processing element u, access array element $a[h(u)]$.
birthday paradox
Collision. When $h(u)=h(v)$ but $u \neq v$.

- A collision is expected after $\Theta(\sqrt{ } \mathrm{n})$ random insertions.
- Separate chaining: $a[i]$ stores linked list of elements u with $h(u)=i$.

Ad-hoc hash function

Ad-hoc hash function.

```
int hash(String s, int n) {
    int hash = 0;
    for (int i = 0; i < s.length(); i++)
        hash = (31 * hash) + s[i];
    return hash % n;
}
        hash function à la Java string library
```

Deterministic hashing. If $|U| \geq n^{2}$, then for any fixed hash function h, there is a subset $S \subseteq U$ of n elements that all hash to same slot. Thus, $\Theta(n)$ time per lookup in worst-case.
Q. But isn't ad-hoc hash function good enough in practice?

Algorithmic complexity attacks

When can't we live with ad-hoc hash function?

- Obvious situations: aircraft control, nuclear reactor, pace maker,
- Surprising situations: denial-of-service (DOS) attacks.
malicious adversary learns your ad-hoc hash function (e.g., by reading Java API) and causes a big pile-up
in a single slot that grinds performance to a halt

Real world exploits. [Crosby-Wallach 2003]

- Linux 2.4.20 kernel: save files with carefully chosen names.
- Perl 5.8.0: insert carefully chosen strings into associative array.
- Bro server: send carefully chosen packets to DOS the server, using less bandwidth than a dial-up modem.

Hashing performance

Ideal hash function. Maps m elements uniformly at random to n hash slots.

- Running time depends on length of chains.
- Average length of chain $=\alpha=m / n$.
- Choose $n \approx m \Rightarrow$ expect $O(1)$ per insert, lookup, or delete.

Challenge. Hash function h that achieves $O(1)$ per operation.
Approach. Use randomization for the choice of h.
adversary knows the randomized algorithm you're using, but doesn't know random choice that the algorithm makes

Universal hashing (Carter-Wegman 1980s)

A universal family of hash functions is a set of hash functions H mapping a universe U to the set $\{0,1, \ldots, n-1\}$ such that

- For any pair of elements $u \neq v: \operatorname{Pr}_{h \in H}[h(u)=h(v)] \leq 1 / n$
- Can select random h efficiently.
- Can compute $h(u)$ efficiently.

Ex. $U=\{a, b, c, d, e, f\}, n=2$.

$$
\begin{aligned}
& H=\left\{h_{1}, h_{2}\right\} \\
& \operatorname{Pr}_{h \in H}[h(a)=h(b)]=1 / 2 \\
& \operatorname{Pr}_{h \in H}[h(a)=h(c)]=1 \\
& \operatorname{Pr}_{h \in H}[h(a)=h(d)]=0
\end{aligned}
$$

not universal

	a	b	c	d	e	f
$h_{1}(x)$	0	1	0	1	0	1
$h_{2}(x)$	0	0	0	1	1	1
$h_{3}(x)$	0	0	1	0	1	1
$h_{4}(x)$	1	0	0	1	1	0

$$
\begin{aligned}
& H=\left\{h_{1}, h_{2}, h_{3}, h_{4}\right\} \\
& \operatorname{Pr}_{h \in H}[\mathrm{~h}(a)=\mathrm{h}(b)]=1 / 2 \\
& \operatorname{Pr}_{h \in H}[\mathrm{~h}(a)=\mathrm{h}(c)]=1 / 2 \\
& \operatorname{Pr}_{h \in H}[\mathrm{~h}(a)=\mathrm{h}(d)]=1 / 2 \\
& \operatorname{Pr}_{h \in H}[\mathrm{~h}(a)=\mathrm{h}(e)]=1 / 2 \\
& \operatorname{Pr}_{h \in H}[\mathrm{~h}(a)=\mathrm{h}(f)]=0
\end{aligned}
$$

Universal hashing: analysis

Proposition. Let H be a universal family of hash functions mapping a universe U to the set $\{0,1, \ldots, n-1\}$; let $h \in H$ be chosen uniformly at random from H; let $S \subseteq U$ be a subset of size at most n; and let $u \notin S$. Then, the expected number of items in S that collide with u is at most 1.

Pf. For any $s \in S$, define random variable $X_{s}=1$ if $h(s)=h(u)$, and 0 otherwise. Let X be a random variable counting the total number of collisions with u.

Q. OK, but how do we design a universal class of hash functions?

Designing a universal family of hash functions

Modulus. We will use a prime number p for the size of the hash table.

Integer encoding. Uniquely identify each element $u \in U$ with a base- p integer of r digits: $x=\left(x_{1}, x_{2}, \ldots, x_{r}\right)$.

Hash function. Let $A=$ set of all r-digit, base- p integers. For each $a=\left(a_{1}, a_{2}, \ldots, a_{r}\right)$ where $0 \leq a_{i}<p$, define

$$
h_{a}(x)=\left(\sum_{i=1}^{r} a_{i} x_{i}\right) \bmod p \longleftarrow \text { maps universe } U \text { to set }\{0,1, \ldots, p-1\}
$$

Hash function family. $H=\left\{h_{a}: a \in A\right\}$.

Designing a universal family of hash functions

Theorem. $H=\left\{h_{a}: a \in A\right\}$ is a universal family of hash functions.

Pf. Let $x=\left(x_{1}, x_{2}, \ldots, x_{r}\right)$ and $y=\left(y_{1}, y_{2}, \ldots, y_{r}\right)$ encode two distinct elements of U.
We need to show that $\operatorname{Pr}\left[h_{a}(x)=h_{a}(y)\right] \leq 1 / p$.

- Since $x \neq y$, there exists an integer j such that $x_{j} \neq y_{j}$.
- We have $h_{a}(x)=h_{a}(y)$ iff

$$
a_{j} \underbrace{\left(y_{j}-x_{j}\right)}_{z} \equiv \underbrace{\sum_{i \neq j} a_{i}\left(x_{i}-y_{i}\right)}_{m} \bmod p
$$

- Can assume a was chosen uniformly at random by first selecting all coordinates a_{i} where $i \neq j$, then selecting a_{j} at random. Thus, we can assume a_{i} is fixed for all coordinates $i \neq j$.
- Since p is prime, $a_{j} z \equiv m \bmod p$ has at most one solution among p possibilities. \longleftarrow see lemma on next slide
- Thus $\operatorname{Pr}\left[h_{a}(x)=h_{a}(y)\right] \leq 1 / p$. -

Number theory fact

Fact. Let p be prime, and let $z \neq 0 \bmod p$. Then $\alpha z \equiv m \bmod p$ has at most one solution $0 \leq \alpha<p$.

Pf.

- Suppose $0 \leq \alpha_{1}<p$ and $0 \leq \alpha_{2}<p$ are two different solutions.
- Then $\left(\alpha_{1}-\alpha_{2}\right) z \equiv 0 \bmod p$; hence $\left(\alpha_{1}-\alpha_{2}\right) z$ is divisible by p.
- Since $z \not \equiv 0 \bmod p$, we know that z is not divisible by p.
- It follows that $\left(\alpha_{1}-\alpha_{2}\right)$ is divisible by p.
- This implies $\alpha_{1}=\alpha_{2}$.

Bonus fact. Can replace "at most one" with "exactly one" in above fact. Pf idea. Euclid's algorithm.

Universal hashing: summary

Goal. Given a universe U, maintain a subset $S \subseteq U$ so that insert, delete, and lookup are efficient.

Universal hash function family. $H=\left\{h_{a}: a \in A\right\}$.

$$
h_{a}(x)=\left(\sum_{i=1}^{r} a_{i} x_{i}\right) \bmod p
$$

- Choose p prime so that $m \leq p \leq 2 m$, where $m=|S|$.
- Fact: there exists a prime between m and $2 m . \longleftarrow \begin{gathered}\text { ant find such a prime using } \\ \text { another randomized algorithm (i) }\end{gathered}$

Consequence.

- Space used = $\Theta(m)$.
- Expected number of collisions per operation is ≤ 1
$\Rightarrow O(1)$ time per insert, delete, or lookup.

13. Randomized Algorithms

- contention resolution
- global min cut
- lincarity of expectation
- max 3-satisfiability
- univarsal hashing
- Chernoff bounds
, load balancing

Chernoff Bounds (above mean)

Theorem. Suppose X_{1}, \ldots, X_{n} are independent $0-1$ random variables. Let $X=$ $X_{1}+\ldots+X_{n}$. Then for any $\mu \geq E[X]$ and for any $\delta>0$, we have

$$
\left.\operatorname{Pr}[X>(1+\delta) \mu]<\left[\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right]^{\mu}\right] \quad\left[\begin{array}{c}
\text { sum of independent } 0-1 \text { random variables } \\
\text { is tightly centered on the mean }
\end{array}\right.
$$

Pf. We apply a number of simple transformations.

- For any t >0,

- Now

Chernoff Bounds (above mean)

Pf. [continued]

- Let $p_{i}=\operatorname{Pr}\left[X_{i}=1\right]$. Then,

$$
\begin{aligned}
& E\left[e^{t X_{i}}\right]=p_{i} e^{t}+\left(1-p_{i}\right) e^{0}=1+p_{i}\left(e^{t}-1\right) \underset{\uparrow}{\uparrow} e^{p_{i}\left(e^{t}-1\right)} \\
& \text { for any } \alpha \geq 0,1+\alpha \leq e^{\alpha}
\end{aligned}
$$

- Combining everything:

- Finally, choose $t=\ln (1+\delta)$.

Chernoff Bounds (below mean)

Theorem. Suppose X_{1}, \ldots, X_{n} are independent 0-1 random variables. Let $X=X_{1}+\ldots+X_{n}$. Then for any $\mu \leq E[X]$ and for any $0<\delta<1$, we have

$$
\operatorname{Pr}[X<(1-\delta) \mu]<e^{-\delta^{2} \mu / 2}
$$

Pf idea. Similar.

Remark. Not quite symmetric since only makes sense to consider $\delta<1$.

13. Randomized Algorithms

- contention resolution
- global min cut
- lincarith of expectation
, max 3-satisfiability
- universal hashing
- Chernoff hounds
- load balancing

Load balancing

Load balancing. System in which m jobs arrive in a stream and need to be processed immediately on m identical processors. Find an assignment that balances the workload across processors.

Centralized controller. Assign jobs in round-robin manner. Each processor receives at most $\lceil m / n\rceil$ jobs.

Decentralized controller. Assign jobs to processors uniformly at random. How likely is it that some processor is assigned "too many" jobs?

Load balancing

Analysis.

- Let $X_{i}=$ number of jobs assigned to processor i.
- Let $Y_{i j}=1$ if job j assigned to processor i, and 0 otherwise.
- We have $\mathrm{E}\left[Y_{i j}\right]=1 / \mathrm{n}$.
- Thus, $X_{i}=\sum_{j} Y_{i j}$, and $\mu=\mathrm{E}\left[X_{i}\right]=1$.
- Applying Chernoff bounds with $\delta=\mathrm{c}-1$ yields $\operatorname{Pr}\left[X_{i}>c\right]<\frac{e^{c-1}}{c^{c}}$
- Let $\gamma(n)$ be number x such that $x^{x}=n$, and choose $c=e \gamma(n)$.

$$
\operatorname{Pr}\left[X_{i}>c\right]<\frac{e^{c-1}}{c^{c}}<\left(\frac{e}{c}\right)^{c}=\left(\frac{1}{\gamma(n)}\right)^{e \gamma(n)}<\left(\frac{1}{\gamma(n)}\right)^{2 \gamma(n)}=\frac{1}{n^{2}}
$$

- Union bound \Rightarrow with probability $\geq 1-1 / n$ no processor receives more than $e \gamma(n)=\Theta(\log n / \log \log n)$ jobs.

Bonus fact: with high probability,
some processor receives $\Theta(\operatorname{logn} / \log \log n)$ jobs

Load balancing: many jobs

Theorem. Suppose the number of jobs $m=16 n \ln n$. Then on average, each of the n processors handles $\mu=16 \ln n$ jobs. With high probability, every processor will have between half and twice the average load.

Pf.

- Let $X_{i}, Y_{i j}$ be as before.
- Applying Chernoff bounds with $\delta=1$ yields

$$
\begin{aligned}
& \operatorname{Pr}\left[X_{i}>2 \mu\right]<\left(\frac{e}{4}\right)^{16 n \ln n}<\left(\frac{1}{e}\right)^{\ln n}=\frac{1}{n^{2}} \\
& \operatorname{Pr}\left[X_{i}<\frac{1}{2} \mu\right]<e^{-\frac{1}{2}\left(\frac{1}{2}\right)^{2} 16 n \ln n}=\frac{1}{n^{2}}
\end{aligned}
$$

- Union bound \Rightarrow every processor has load between half and twice the average with probability $\geq 1-2 / n$. -

