

Lecture slides by Kevin Wayne
Copyright © 2005 Pearson-Addison Wesley

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

13. RANDOMIZED ALGORITHMS

- contention resolution
- global min cut
- linearity of expectation
- max 3-satisfiability
- universal hashing
- Chernoff bounds
- load balancing

Randomization

Algorithmic design patterns.

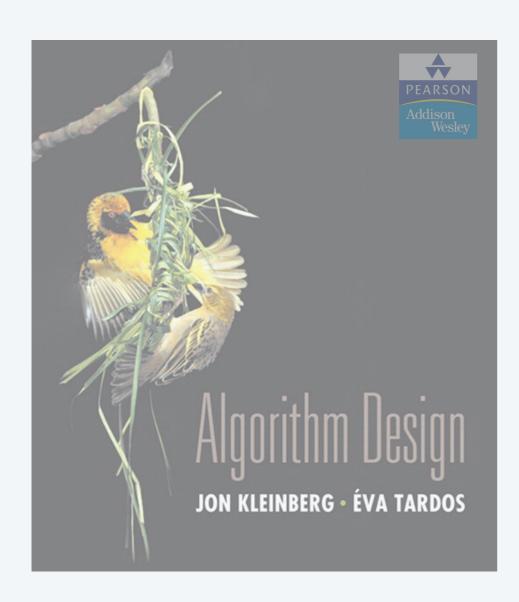
- Greedy.
- Divide-and-conquer.
- Dynamic programming.
- Network flow.
- · Randomization.

in practice, access to a pseudo-random number generator

Randomization. Allow fair coin flip in unit time.

Why randomize? Can lead to simplest, fastest, or only known algorithm for a particular problem.

Ex. Symmetry-breaking protocols, graph algorithms, quicksort, hashing, load balancing, closest pair, Monte Carlo integration, cryptography,



13. RANDOMIZED ALGORITHMS

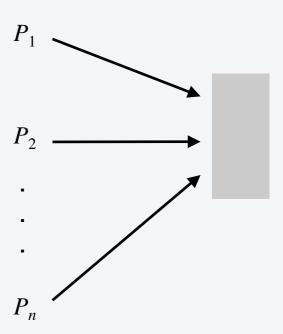
- contention resolution
- global min cut
- ▶ linearity of expectation
- max 3-satisfiability
- universal hashing
- Chernoff bounds
- load balancing

Contention resolution in a distributed system

Contention resolution. Given n processes $P_1, ..., P_n$, each competing for access to a shared database. If two or more processes access the database simultaneously, all processes are locked out. Devise protocol to ensure all processes get through on a regular basis.

Restriction. Processes can't communicate.

Challenge. Need symmetry-breaking paradigm.



Contention resolution: randomized protocol

Protocol. Each process requests access to the database at time t with probability p = 1/n.

Claim. Let S[i, t] = event that process i succeeds in accessing the database at time t. Then $1/(e \cdot n) \le \Pr[S(i, t)] \le 1/(2n)$.

Pf. By independence,
$$\Pr[S(i,t)] = p(1-p)^{n-1}$$
.

process i requests access

none of remaining n-1 processes request access

• Setting p = 1/n, we have $\Pr[S(i, t)] = 1/n (1 - 1/n)^{n-1}$. • value that maximizes $\Pr[S(i, t)]$ between 1/e and 1/2

Useful facts from calculus. As n increases from 2, the function:

- $(1-1/n)^{n-1}$ converges monotonically from 1/4 up to 1/e.
- $(1-1/n)^{n-1}$ converges monotonically from 1/2 down to 1/e.

Contention resolution: randomized protocol

Claim. The probability that process i fails to access the database in en rounds is at most 1/e. After $e \cdot n$ ($c \ln n$) rounds, the probability $\leq n^{-c}$.

Pf. Let F[i, t] = event that process i fails to access database in rounds 1 through t. By independence and previous claim, we have $Pr[F[i, t]] \le (1 - 1/(en))^t$.

- Choose $t = \lceil e \cdot n \rceil$: $\Pr[F(i,t)] \leq \left(1 \frac{1}{en}\right)^{\lceil en \rceil} \leq \left(1 \frac{1}{en}\right)^{en} \leq \frac{1}{e}$
- Choose $t = \lceil e \cdot n \rceil \lceil c \ln n \rceil$: $\Pr[F(i,t)] \leq \left(\frac{1}{e}\right)^{c \ln n} = n^{-c}$

Contention resolution: randomized protocol

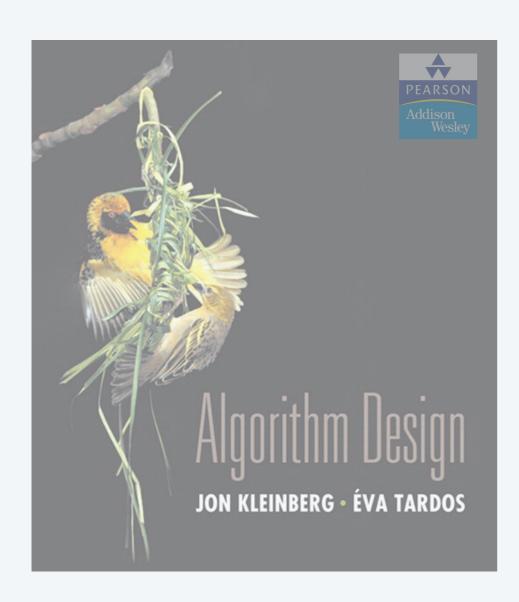
Claim. The probability that all processes succeed within $2e \cdot n \ln n$ rounds is $\geq 1 - 1/n$.

Pf. Let F[t] = event that at least one of the n processes fails to access database in any of the rounds 1 through t.

$$\Pr[F[t]] = \Pr\left[\bigcup_{i=1}^{n} F[i,t]\right] \leq \sum_{i=1}^{n} \Pr[F[i,t]] \leq n\left(1 - \frac{1}{en}\right)^{t}$$
union bound
$$previous slide$$

• Choosing $t = 2 \lceil en \rceil \lceil c \ln n \rceil$ yields $\Pr[F[t]] \le n \cdot n^{-2} = 1/n$.

Union bound. Given events
$$E_1, ..., E_n$$
, $\Pr\left[\bigcup_{i=1}^n E_i\right] \leq \sum_{i=1}^n \Pr[E_i]$



13. RANDOMIZED ALGORITHMS

- contention resolution
- global min cut
- ▶ linearity of expectation
- max 3-satisfiability
- universal hashing
- Chernoff bounds
- load balancing

Global minimum cut

Global min cut. Given a connected, undirected graph G = (V, E), find a cut (A, B) of minimum cardinality.

Applications. Partitioning items in a database, identify clusters of related documents, network reliability, network design, circuit design, TSP solvers.

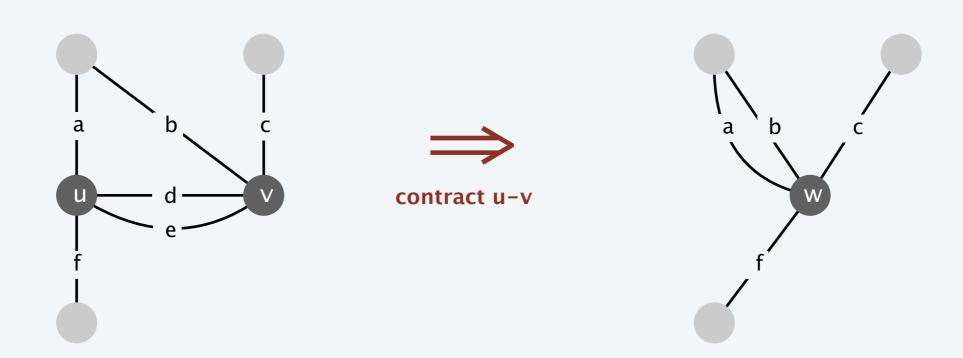
Network flow solution.

- Replace every edge (u, v) with two antiparallel edges (u, v) and (v, u).
- Pick some vertex s and compute min s–v cut separating s from each other node $v \in V$.

False intuition. Global min-cut is harder than min s-t cut.

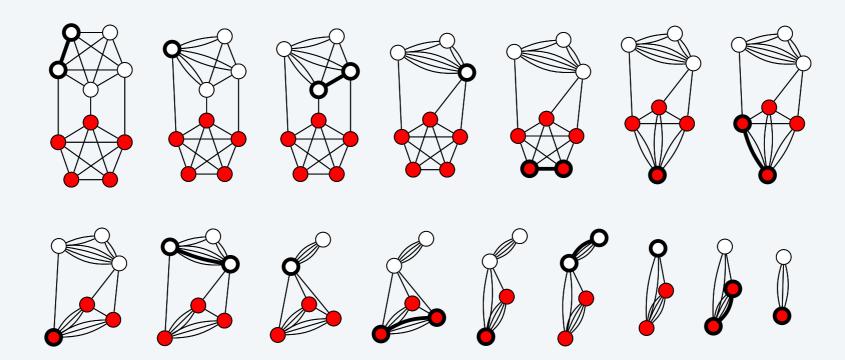
Contraction algorithm. [Karger 1995]

- Pick an edge e = (u, v) uniformly at random.
- Contract edge e.
 - replace *u* and *v* by single new super-node *w*
 - preserve edges, updating endpoints of *u* and *v* to *w*
 - keep parallel edges, but delete self-loops
- Repeat until graph has just two nodes u_1 and v_1 .
- Return the cut (all nodes that were contracted to form v_1).



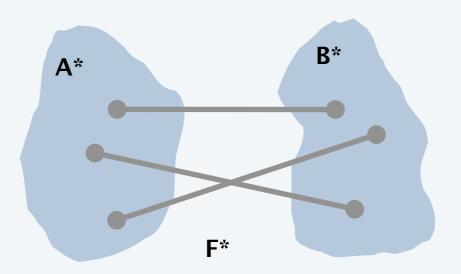
Contraction algorithm. [Karger 1995]

- Pick an edge e = (u, v) uniformly at random.
- Contract edge e.
 - replace *u* and *v* by single new super-node *w*
 - preserve edges, updating endpoints of *u* and *v* to *w*
 - keep parallel edges, but delete self-loops
- Repeat until graph has just two nodes u_1 and v_1 .
- Return the cut (all nodes that were contracted to form v_1).



Claim. The contraction algorithm returns a min cut with prob $\geq 2 / n^2$.

- Pf. Consider a global min-cut (A^*, B^*) of G.
 - Let F^* be edges with one endpoint in A^* and the other in B^* .
 - Let $k = |F^*| = \text{size of min cut.}$
 - In first step, algorithm contracts an edge in F^* probability k/|E|.
 - Every node has degree $\ge k$ since otherwise (A^*, B^*) would not be a min-cut $\Rightarrow |E| \ge \frac{1}{2} k n \Leftrightarrow k/|E| \le 2/n$.
 - Thus, algorithm contracts an edge in F^* with probability $\leq 2/n$.



Claim. The contraction algorithm returns a min cut with prob $\geq 2 / n^2$.

- Pf. Consider a global min-cut (A^*, B^*) of G.
 - Let F^* be edges with one endpoint in A^* and the other in B^* .
 - Let $k = |F^*| = \text{size of min cut.}$
 - Let G' be graph after j iterations. There are n' = n j supernodes.
 - Suppose no edge in F^* has been contracted. The min-cut in G' is still k.
 - Since value of min-cut is k, $|E'| \ge \frac{1}{2} k n' \iff k/|E'| \le \frac{2}{n'}$.
 - Thus, algorithm contracts an edge in F^* with probability $\leq 2/n'$.
 - Let E_j = event that an edge in F^* is not contracted in iteration j.

$$\Pr[E_1 \cap E_2 \cdots \cap E_{n-2}] = \Pr[E_1] \times \Pr[E_2 \mid E_1] \times \cdots \times \Pr[E_{n-2} \mid E_1 \cap E_2 \cdots \cap E_{n-3}]$$

$$\geq \left(1 - \frac{2}{n}\right) \left(1 - \frac{2}{n-1}\right) \cdots \left(1 - \frac{2}{4}\right) \left(1 - \frac{2}{3}\right)$$

$$= \left(\frac{n-2}{n}\right) \left(\frac{n-3}{n-1}\right) \cdots \left(\frac{2}{4}\right) \left(\frac{1}{3}\right)$$

$$= \frac{2}{n(n-1)}$$

$$\geq \frac{2}{n^2}$$

Amplification. To amplify the probability of success, run the contraction algorithm many times.

with independent random choices,

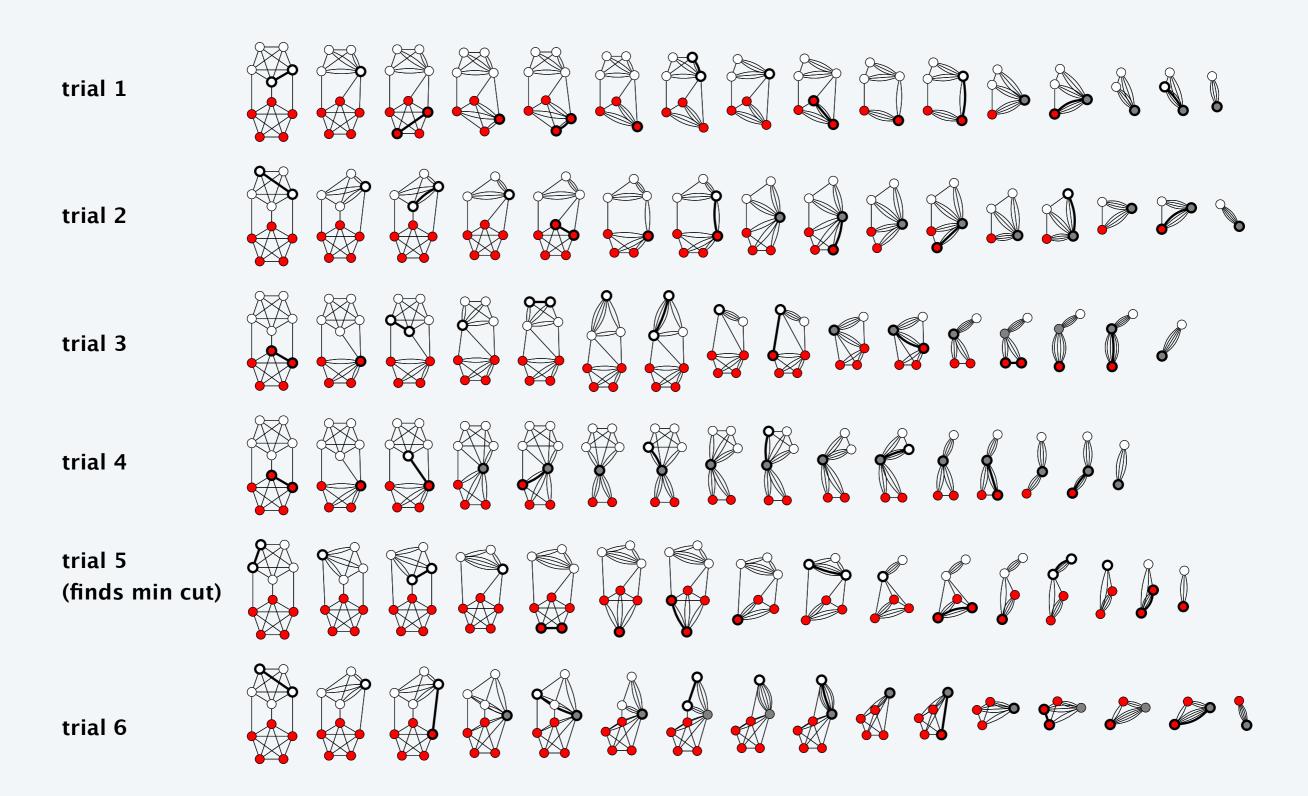
Claim. If we repeat the contraction algorithm $n^2 \ln n$ times, then the probability of failing to find the global min-cut is $\leq 1/n^2$.

Pf. By independence, the probability of failure is at most

$$\left(1 - \frac{2}{n^2}\right)^{n^2 \ln n} = \left[\left(1 - \frac{2}{n^2}\right)^{\frac{1}{2}n^2}\right]^{2\ln n} \le \left(e^{-1}\right)^{2\ln n} = \frac{1}{n^2}$$

$$(1 - 1/x)^x \le 1/e$$

Contraction algorithm: example execution



Global min cut: context

Remark. Overall running time is slow since we perform $\Theta(n^2 \log n)$ iterations and each takes $\Omega(m)$ time.

Improvement. [Karger–Stein 1996] $O(n^2 \log^3 n)$.

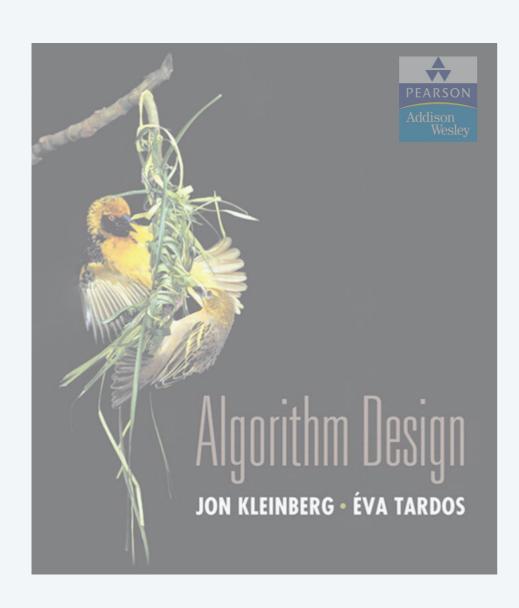
- Early iterations are less risky than later ones: probability of contracting an edge in min cut hits 50% when $n/\sqrt{2}$ nodes remain.
- Run contraction algorithm until $n / \sqrt{2}$ nodes remain.
- Run contraction algorithm twice on resulting graph and return best of two cuts.

Extensions. Naturally generalizes to handle positive weights.

Best known. [Karger 2000] $O(m \log^3 n)$.

1

faster than best known max flow algorithm or deterministic global min cut algorithm



13. RANDOMIZED ALGORITHMS

- contention resolution
- global min cut
- linearity of expectation
- max 3-satisfiability
- universal hashing
- Chernoff bounds
- load balancing

Expectation

Expectation. Given a discrete random variable X, its expectation E[X] is defined by:

$$E[X] = \sum_{j=0}^{\infty} j \Pr[X = j]$$

Waiting for a first success. Coin is heads with probability p and tails with probability 1-p. How many independent flips X until first heads?

$$E[X] = \sum_{j=0}^{\infty} j \cdot \Pr[X = j] = \sum_{j=0}^{\infty} j (1-p)^{j-1} p = \frac{p}{1-p} \sum_{j=0}^{\infty} j (1-p)^{j} = \frac{p}{1-p} \cdot \frac{1-p}{p^{2}} = \frac{1}{p}$$

$$\downarrow j-1 \text{ tails} \quad 1 \text{ head}$$

$$\sum_{j=0}^{\infty} j x^{j} = \frac{x}{(1-x)^{2}}$$

Expectation: two properties

Useful property. If *X* is a 0/1 random variable, E[X] = Pr[X = 1].

Pf.
$$E[X] = \sum_{j=0}^{\infty} j \cdot \Pr[X = j] = \sum_{j=0}^{1} j \cdot \Pr[X = j] = \Pr[X = 1]$$

not necessarily independent

Linearity of expectation. Given two random variables X and Y defined over the same probability space, E[X + Y] = E[X] + E[Y].

Benefit. Decouples a complex calculation into simpler pieces.

Guessing cards

Game. Shuffle a deck of *n* cards; turn them over one at a time; try to guess each card.

Memoryless guessing. No psychic abilities; can't even remember what's been turned over already. Guess a card from full deck uniformly at random.

Claim. The expected number of correct guesses is 1.

Pf. [surprisingly effortless using linearity of expectation]

- Let $X_i = 1$ if i^{th} prediction is correct and 0 otherwise.
- Let X = number of correct guesses $= X_1 + ... + X_n$.
- $E[X_i] = Pr[X_i = 1] = 1 / n$.
- $E[X] = E[X_1] + \dots + E[X_n] = 1/n + \dots + 1/n = 1.$ •

linearity of expectation

Guessing cards

Game. Shuffle a deck of *n* cards; turn them over one at a time; try to guess each card.

Guessing with memory. Guess a card uniformly at random from cards not yet seen.

Claim. The expected number of correct guesses is $\Theta(\log n)$. Pf.

- Let $X_i = 1$ if i^{th} prediction is correct and 0 otherwise.
- Let X = number of correct guesses $= X_1 + ... + X_n$.
- $E[X_i] = \Pr[X_i = 1] = 1 / (n (i 1)).$
- $E[X] = E[X_1] + \dots + E[X_n] = 1/n + \dots + 1/2 + 1/1 = H(n)$. •

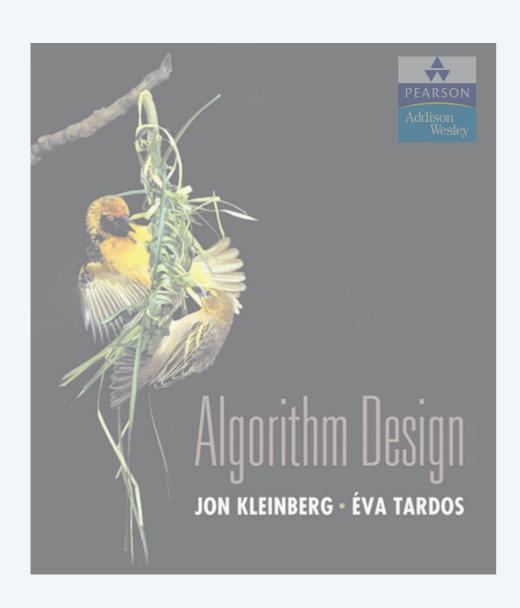
linearity of expectation

Coupon collector

Coupon collector. Each box of cereal contains a coupon. There are n different types of coupons. Assuming all boxes are equally likely to contain each coupon, how many boxes before you have ≥ 1 coupon of each type?

Claim. The expected number of steps is $\Theta(n \log n)$. Pf.

- Phase j = time between j and j + 1 distinct coupons.
- Let X_j = number of steps you spend in phase j.
- Let X = number of steps in total = $X_0 + X_1 + ... + X_{n-1}$.



13. RANDOMIZED ALGORITHMS

- contention resolution
- global min cut
- ▶ linearity of expectation
- max 3-satisfiability
- universal hashing
- Chernoff bounds
- load balancing

Maximum 3-satisfiability

exactly 3 literals per clause and each literal corresponds to a different variable

Maximum 3-satisfiability. Given a 3-SAT formula, find a truth assignment that satisfies as many clauses as possible.

$$C_{1} = x_{2} \lor x_{3} \lor x_{4}$$

$$C_{2} = x_{2} \lor x_{3} \lor x_{4}$$

$$C_{3} = \overline{x_{1}} \lor x_{2} \lor x_{4}$$

$$C_{4} = \overline{x_{1}} \lor \overline{x_{2}} \lor x_{3}$$

$$C_{5} = x_{1} \lor \overline{x_{2}} \lor \overline{x_{4}}$$

Remark. NP-hard optimization problem.

Simple idea. Flip a coin, and set each variable true with probability ½, independently for each variable.

Maximum 3-satisfiability: analysis

Claim. Given a 3-SAT formula with k clauses, the expected number of clauses satisfied by a random assignment is 7k/8.

Pf. Consider random variable
$$Z_j = \begin{cases} 1 & \text{if clause } C_j \text{ is satisfied} \\ 0 & \text{otherwise.} \end{cases}$$

• Let Z = number of clauses satisfied by random assignment.

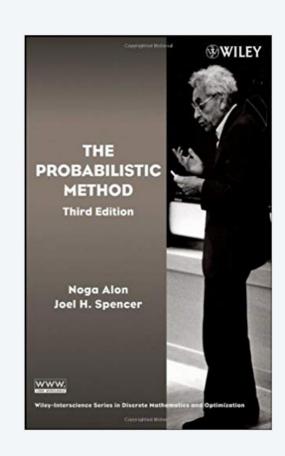
$$E[Z] = \sum_{j=1}^{k} E[Z_j]$$
=
$$\sum_{j=1}^{k} \Pr[\text{clause } C_j \text{ is satisfied}]$$
=
$$\frac{7}{8}k$$

The probabilistic method

Corollary. For any instance of 3-SAT, there exists a truth assignment that satisfies at least a 7/8 fraction of all clauses.

Pf. Random variable is at least its expectation some of the time.

Probabilistic method. [Paul Erdös] Prove the existence of a non-obvious property by showing that a random construction produces it with positive probability!



Maximum 3-satisfiability: analysis

- Q. Can we turn this idea into a 7/8-approximation algorithm?
- A. Yes (but a random variable can almost always be below its mean).

Lemma. The probability that a random assignment satisfies $\geq 7k/8$ clauses is at least 1/(8k).

Pf. Let p_j be probability that exactly j clauses are satisfied; let p be probability that $\geq 7k/8$ clauses are satisfied.

$$\frac{7}{8}k = E[Z] = \sum_{j \ge 0} j p_j
= \sum_{j < 7k/8} j p_j + \sum_{j \ge 7k/8} j p_j
\le \left(\frac{7k}{8} - \frac{1}{8}\right) \sum_{j < 7k/8} p_j + k \sum_{j \ge 7k/8} p_j
\le \left(\frac{7}{8}k - \frac{1}{8}\right) \cdot 1 + k p$$

Rearranging terms yields $p \ge 1/(8k)$.

Maximum 3-satisfiability: analysis

Johnson's algorithm. Repeatedly generate random truth assignments until one of them satisfies $\geq 7k/8$ clauses.

Theorem. Johnson's algorithm is a 7/8-approximation algorithm.

Pf. By previous lemma, each iteration succeeds with probability $\geq 1/(8k)$. By the waiting-time bound, the expected number of trials to find the satisfying assignment is at most 8k.

Maximum satisfiability

Extensions.

- Allow one, two, or more literals per clause.
- Find max weighted set of satisfied clauses.

Theorem. [Asano-Williamson 2000] There exists a 0.784-approximation algorithm for Max-Sat.

Theorem. [Karloff–Zwick 1997, Zwick+computer 2002] There exists a 7/8-approximation algorithm for version of Max-3-Sat in which each clause has at most 3 literals.

Theorem. [Håstad 1997] Unless $\mathbf{P} = \mathbf{NP}$, no ρ -approximation algorithm for Max-3-Sat (and hence Max-Sat) for any $\rho > 7/8$.

1

very unlikely to improve over simple randomized algorithm for Max-3-Sat

Monte Carlo vs. Las Vegas algorithms

Monte Carlo. Guaranteed to run in poly-time, likely to find correct answer. Ex: Contraction algorithm for global min cut.

Las Vegas. Guaranteed to find correct answer, likely to run in poly-time.

Ex: Randomized quicksort, Johnson's Max-3-Sat algorithm.

stop algorithm after a certain point

Remark. Can always convert a Las Vegas algorithm into Monte Carlo, but no known method (in general) to convert the other way.

RP and ZPP

RP. [Monte Carlo] Decision problems solvable with one-sided error in poly-time.

One-sided error.

- If the correct answer is no, always return no.
- If the correct answer is *yes*, return *yes* with probability $\geq \frac{1}{2}$.

ZPP. [Las Vegas] Decision problems solvable in expected poly-time.

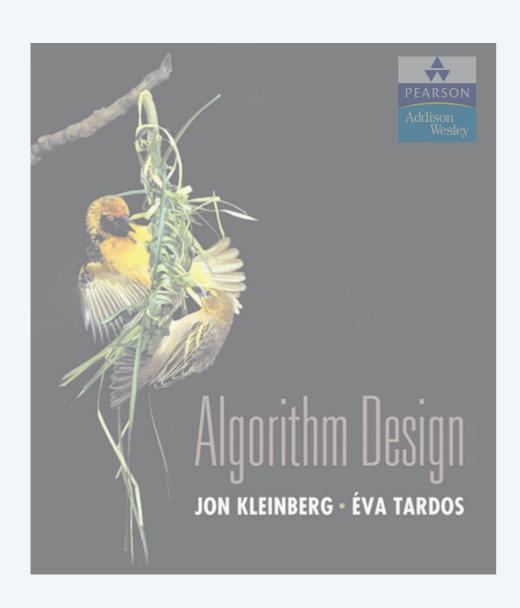
running time can be unbounded, but fast on average

can decrease probability of false negative

to 2-100 by 100 independent repetitions

Theorem. $P \subseteq ZPP \subseteq RP \subseteq NP$.

Fundamental open questions. To what extent does randomization help? Does P = ZPP? Does ZPP = RP? Does RP = NP?



13. RANDOMIZED ALGORITHMS

- contention resolution
- global min cut
- ▶ linearity of expectation
- max 3-satisfiability
- universal hashing
- Chernoff bounds
- load balancing

Dictionary data type

Dictionary. Given a universe U of possible elements, maintain a subset $S \subseteq U$ so that inserting, deleting, and searching in S is efficient.

Dictionary interface.

- *create*(): initialize a dictionary with $S = \emptyset$.
- insert(u): add element $u \in U$ to S.
- delete(u): delete u from S (if u is currently in S).
- *lookup*(*u*): is *u* in *S*?

Challenge. Universe U can be extremely large so defining an array of size U is infeasible.

Applications. File systems, databases, Google, compilers, checksums, P2P networks, associative arrays, cryptography, web caching, etc.

Hashing

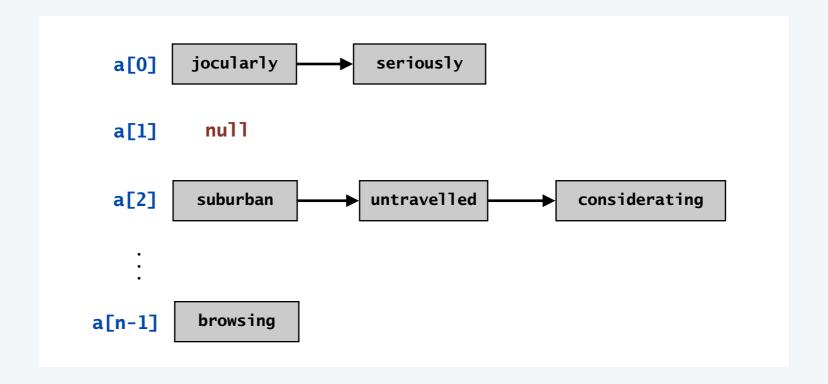
Hash function. $h : U \to \{0, 1, ..., n-1\}$.

Hashing. Create an array a of length n. When processing element u, access array element a[h(u)].

Collision. When h(u) = h(v) but $u \neq v$.

birthday paradox

- A collision is expected after $\Theta(\sqrt{n})$ random insertions.
- Separate chaining: a[i] stores linked list of elements u with h(u) = i.



Ad-hoc hash function

Ad-hoc hash function.

```
int hash(String s, int n) {
  int hash = 0;
  for (int i = 0; i < s.length(); i++)
     hash = (31 * hash) + s[i];
  return hash % n;
}
  hash function à la Java string library</pre>
```

Deterministic hashing. If $|U| \ge n^2$, then for any fixed hash function h, there is a subset $S \subseteq U$ of n elements that all hash to same slot. Thus, $\Theta(n)$ time per lookup in worst-case.

Q. But isn't ad-hoc hash function good enough in practice?

Algorithmic complexity attacks

When can't we live with ad-hoc hash function?

- Obvious situations: aircraft control, nuclear reactor, pace maker,
- Surprising situations: denial-of-service (DOS) attacks.

malicious adversary learns your ad-hoc hash function (e.g., by reading Java API) and causes a big pile-up in a single slot that grinds performance to a halt

Real world exploits. [Crosby-Wallach 2003]

- Linux 2.4.20 kernel: save files with carefully chosen names.
- Perl 5.8.0: insert carefully chosen strings into associative array.
- Bro server: send carefully chosen packets to DOS the server, using less bandwidth than a dial-up modem.

Hashing performance

Ideal hash function. Maps m elements uniformly at random to n hash slots.

- Running time depends on length of chains.
- Average length of chain = $\alpha = m/n$.
- Choose $n \approx m \Rightarrow \text{expect } O(1)$ per insert, lookup, or delete.

Challenge. Hash function h that achieves O(1) per operation.

Approach. Use randomization for the choice of h.

adversary knows the randomized algorithm you're using, but doesn't know random choice that the algorithm makes

Universal hashing (Carter-Wegman 1980s)

A universal family of hash functions is a set of hash functions H mapping a universe U to the set $\{0, 1, ..., n-1\}$ such that

- For any pair of elements $u \neq v$: $\Pr_{h \in H} [h(u) = h(v)] \leq 1/n$
- Can select random h efficiently.
- Can compute h(u) efficiently.

chosen uniformly at random

Ex. $U = \{a, b, c, d, e, f\}, n = 2.$

 $h_1(x)$

	a	b	С	d	е	f
h ₁ (x)	0	1	0	1	0	1
h ₂ (x)	0	0	0	1	1	1

$$H = \{h_1, h_2\}$$

$$\Pr_{h \in H} [h(a) = h(b)] = 1/2$$

$$\Pr_{h \in H} [h(a) = h(c)] = 1$$

$$\Pr_{h \in H} \left[h(a) = h(d) \right] = 0$$

. . .

$$H = \{h_1, h_2, h_3, h_4\}$$

$$\Pr_{h \in H} [h(a) = h(b)] = 1/2$$

$$\Pr_{h \in H} [h(a) = h(c)] = 1/2$$

$$\Pr_{h \in H} [h(a) = h(d)] = 1/2$$

$$\Pr_{h \in H} [h(a) = h(e)] = 1/2$$

$$\Pr_{h \in H} [h(a) = h(f)] = 0$$

not universal

universal

 $h_2(x)$ 0 0 0 1 1 1 1 $h_3(x)$ 0 0 0 1 0 1 1 $h_4(x)$ 1 0 0 1 1 0

0

38

Universal hashing: analysis

Proposition. Let H be a universal family of hash functions mapping a universe U to the set $\{0, 1, ..., n-1\}$; let $h \in H$ be chosen uniformly at random from H; let $S \subseteq U$ be a subset of size at most n; and let $u \notin S$. Then, the expected number of items in S that collide with U is at most 1.

Pf. For any $s \in S$, define random variable $X_s = 1$ if h(s) = h(u), and 0 otherwise. Let X be a random variable counting the total number of collisions with u.

$$E_{h \in H}[X] = E[\sum_{s \in S} X_s] = \sum_{s \in S} E[X_s] = \sum_{s \in S} \Pr[X_s = 1] \le \sum_{s \in S} \frac{1}{n} = |S| \frac{1}{n} \le 1$$
linearity of expectation X_s is a 0-1 random variable universal

Q. OK, but how do we design a universal class of hash functions?

Designing a universal family of hash functions

Modulus. We will use a prime number p for the size of the hash table.

Integer encoding. Uniquely identify each element $u \in U$ with a base-p integer of r digits: $x = (x_1, x_2, ..., x_r)$.

distinct elements have different encodings

Hash function. Let A = set of all r-digit, base-p integers. For each $a = (a_1, a_2, ..., a_r)$ where $0 \le a_i < p$, define

$$h_a(x) = \left(\sum_{i=1}^r a_i x_i\right) \mod p \quad \longleftarrow \text{ maps universe } U \text{ to set } \{0, 1, \dots, p-1\}$$

Hash function family. $H = \{ h_a : a \in A \}$.

Designing a universal family of hash functions

Theorem. $H = \{ h_a : a \in A \}$ is a universal family of hash functions.

Pf. Let $x = (x_1, x_2, ..., x_r)$ and $y = (y_1, y_2, ..., y_r)$ encode two distinct elements of U. We need to show that $\Pr[h_a(x) = h_a(y)] \le 1 / p$.

- Since $x \neq y$, there exists an integer j such that $x_j \neq y_j$.
- We have $h_a(x) = h_a(y)$ iff

$$a_j \underbrace{(y_j - x_j)}_{z} \equiv \underbrace{\sum_{i \neq j} a_i (x_i - y_i)}_{m} \mod p$$

- Can assume a was chosen uniformly at random by first selecting all coordinates a_i where $i \neq j$, then selecting a_j at random. Thus, we can assume a_i is fixed for all coordinates $i \neq j$.
- Since p is prime, $a_j z \equiv m \mod p$ has at most one solution among p possibilities. \longleftarrow see lemma on next slide
- Thus $\Pr[h_a(x) = h_a(y)] \le 1/p$. •

Number theory fact

Fact. Let p be prime, and let $z \not\equiv 0 \bmod p$. Then $\alpha z \equiv m \bmod p$ has at most one solution $0 \le \alpha < p$.

Pf.

- Suppose $0 \le \alpha_1 < p$ and $0 \le \alpha_2 < p$ are two different solutions.
- Then $(\alpha_1 \alpha_2) z \equiv 0 \mod p$; hence $(\alpha_1 \alpha_2) z$ is divisible by p.
- Since $z \not\equiv 0 \bmod p$, we know that z is not divisible by p.
- It follows that $(\alpha_1 \alpha_2)$ is divisible by p.
- This implies $\alpha_1 = \alpha_2$. •

here's where we use that p is prime

Bonus fact. Can replace "at most one" with "exactly one" in above fact. Pf idea. Euclid's algorithm.

Universal hashing: summary

Goal. Given a universe U, maintain a subset $S \subseteq U$ so that insert, delete, and lookup are efficient.

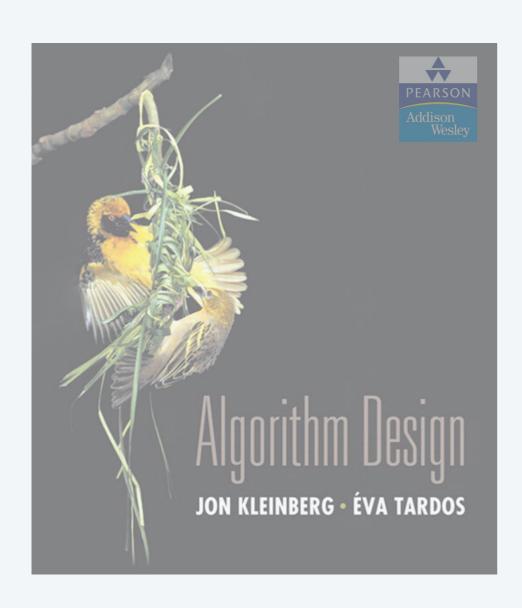
Universal hash function family. $H = \{ h_a : a \in A \}$.

$$h_a(x) = \left(\sum_{i=1}^r a_i x_i\right) \mod p$$

- Choose p prime so that $m \le p \le 2m$, where m = |S|.
- Fact: there exists a prime between m and 2m. \longleftarrow can find such a prime using another randomized algorithm (!)

Consequence.

- Space used = $\Theta(m)$.
- Expected number of collisions per operation is ≤ 1
 - \Rightarrow O(1) time per insert, delete, or lookup.



13. RANDOMIZED ALGORITHMS

- contention resolution
- global min cut
- ▶ linearity of expectation
- max 3-satisfiability
- universal hashing
- Chernoff bounds
- load balancing

Chernoff Bounds (above mean)

Theorem. Suppose $X_1, ..., X_n$ are independent 0-1 random variables. Let $X = X_1 + ... + X_n$. Then for any $\mu \ge E[X]$ and for any $\delta > 0$, we have

$$\Pr[X > (1+\delta)\mu] < \left[\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right]^{\mu}$$

sum of independent 0-1 random variables is tightly centered on the mean

Pf. We apply a number of simple transformations.

• For any t > 0,

$$\Pr[X > (1+\delta)\mu] = \Pr\left[e^{tX} > e^{t(1+\delta)\mu}\right] \le e^{-t(1+\delta)\mu} \cdot E[e^{tX}]$$

$$f(x) = e^{tX} \text{ is monotone in } x$$

$$\max \{ e^{-t(1+\delta)\mu} \cdot E[e^{tX}] \}$$

$$\max \{ e^{-t(1+\delta)\mu} \cdot E[e^{tX}] \}$$

• Now
$$E[e^{tX}] = E[e^{t\sum_i X_i}] = \prod_i E[e^{tX_i}]$$
 definition of X independence

Chernoff Bounds (above mean)

Pf. [continued]

• Let $p_i = \Pr[X_i = 1]$. Then,

$$E[e^{tX_i}] = p_i e^t + (1 - p_i) e^0 = 1 + p_i (e^t - 1) \le e^{p_i (e^t - 1)}$$
for any $\alpha \ge 0, 1 + \alpha \le e^{\alpha}$

Combining everything:

$$\Pr[X > (1+\delta)\mu] \leq e^{-t(1+\delta)\mu} \prod_{i} E[e^{tX_{i}}] \leq e^{-t(1+\delta)\mu} \prod_{i} e^{p_{i}(e^{t}-1)} \leq e^{-t(1+\delta)\mu} e^{\mu(e^{t}-1)}$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$
previous slide inequality above
$$\sum_{i} p_{i} = E[X] \leq \mu$$

• Finally, choose $t = \ln(1 + \delta)$.

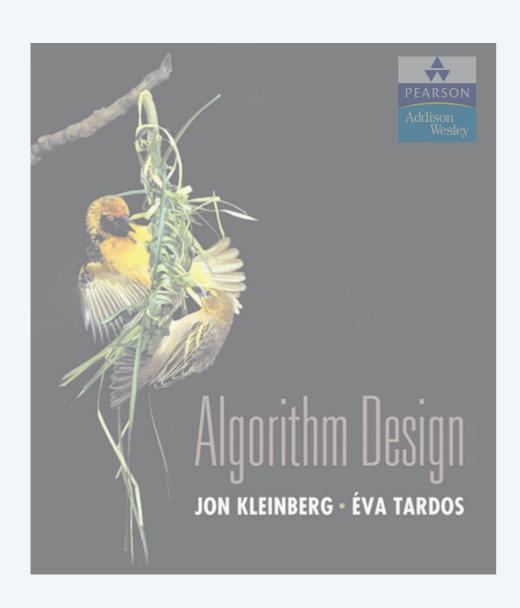
Chernoff Bounds (below mean)

Theorem. Suppose $X_1, ..., X_n$ are independent 0-1 random variables. Let $X = X_1 + ... + X_n$. Then for any $\mu \le E[X]$ and for any $0 < \delta < 1$, we have

$$\Pr[X < (1-\delta)\mu] < e^{-\delta^2 \mu/2}$$

Pf idea. Similar.

Remark. Not quite symmetric since only makes sense to consider $\delta < 1$.



13. RANDOMIZED ALGORITHMS

- contention resolution
- global min cut
- ▶ linearity of expectation
- max 3-satisfiability
- universal hashing
- Chernoff bounds
- load balancing

Load balancing

Load balancing. System in which m jobs arrive in a stream and need to be processed immediately on m identical processors. Find an assignment that balances the workload across processors.

Centralized controller. Assign jobs in round-robin manner. Each processor receives at most $\lceil m / n \rceil$ jobs.

Decentralized controller. Assign jobs to processors uniformly at random. How likely is it that some processor is assigned "too many" jobs?

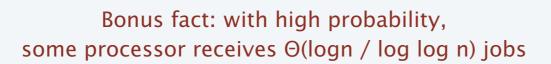
Load balancing

Analysis.

- Let X_i = number of jobs assigned to processor i.
- Let $Y_{ij} = 1$ if job j assigned to processor i, and 0 otherwise.
- We have $E[Y_{ij}] = 1/n$.
- Thus, $X_i = \sum_j Y_{ij}$, and $\mu = E[X_i] = 1$.
- Applying Chernoff bounds with $\delta = c 1$ yields $\Pr[X_i > c] < \frac{e^{c-1}}{c^c}$
- Let $\gamma(n)$ be number x such that $x^x = n$, and choose $c = e \gamma(n)$.

$$\Pr[X_i > c] < \frac{e^{c-1}}{c^c} < \left(\frac{e}{c}\right)^c = \left(\frac{1}{\gamma(n)}\right)^{e\gamma(n)} < \left(\frac{1}{\gamma(n)}\right)^{2\gamma(n)} = \frac{1}{n^2}$$

• Union bound \Rightarrow with probability $\ge 1 - 1/n$ no processor receives more than $e \gamma(n) = \Theta(\log n / \log \log n)$ jobs.



Load balancing: many jobs

Theorem. Suppose the number of jobs $m = 16 n \ln n$. Then on average, each of the n processors handles $\mu = 16 \ln n$ jobs. With high probability, every processor will have between half and twice the average load.

Pf.

- Let X_i , Y_{ij} be as before.
- Applying Chernoff bounds with $\delta = 1$ yields

$$\Pr[X_i > 2\mu] < \left(\frac{e}{4}\right)^{16n \ln n} < \left(\frac{1}{e}\right)^{\ln n} = \frac{1}{n^2}$$

$$\Pr[X_i < \frac{1}{2}\mu] < e^{-\frac{1}{2}(\frac{1}{2})^2 \cdot 16n \ln n} = \frac{1}{n^2}$$

 Union bound ⇒ every processor has load between half and twice the average with probability ≥ 1 - 2/n.