

10. EXTENDING TRACTABILITY

- finding small vertex covers
- solving NP-hard problems on trees
- circular arc coverings
- vertex cover in bipartite graphs

Lecture slides by Kevin Wayne
Copyright © 2005 Pearson-Addison Wesley
http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Coping with NP-completeness

Q. Suppose I need to solve an NP-complete problem. What should I do?
A. Theory says you're unlikely to find poly-time algorithm.

Must sacrifice one of three desired features.

- Solve problem to optimality.
- Solve problem in polynomial time.
- Solve arbitrary instances of the problem.

This lecture. Solve some special cases of NP-complete problems.

10. Extending Tractability

- finding small vertex covers
- solving NP-hard problems on trees
- circular arc coverings
- vertex cover in bipartite graphs

Vertex cover

Given a graph $G=(V, E)$ and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \leq k$, and for each edge (u, v) either $u \in S$ or $v \in S$ or both?

$S=\{3,6,7,10\}$ is a vertex cover of size $k=4$

Finding small vertex covers

Q. Vertex-Cover is NP-complete. But what if k is small?

Brute force. $O\left(k n^{k+1}\right)$.

- Try all $C(n, k)=O\left(n^{k}\right)$ subsets of size k.
- Takes $O(k n)$ time to check whether a subset is a vertex cover.

Goal. Limit exponential dependency on k, say to $\mathrm{O}\left(2^{k} k n\right)$.

Ex. $n=1,000, k=10$.
Brute. $k n^{k+1}=10^{34} \Rightarrow$ infeasible.
Better. $2^{k} k n=10^{7} \Rightarrow$ feasible.

Remark. If k is a constant, then the algorithm is poly-time; if k is a small constant, then it's also practical.

Finding small vertex covers

Claim. Let (u, v) be an edge of G. G has a vertex cover of size $\leq k$ iff at least one of $G-\{u\}$ and $G-\{v\}$ has a vertex cover of size $\leq k-1$.
delete v and all incident edges
Pf. \Rightarrow

- Suppose G has a vertex cover S of size $\leq k$.
- S contains either u or v (or both). Assume it contains u.
- $S-\{u\}$ is a vertex cover of $G-\{u\}$.

Pf. \Leftarrow

- Suppose S is a vertex cover of $G-\{u\}$ of size $\leq k-1$.
- Then $S \cup\{u\}$ is a vertex cover of G. -

Claim. If G has a vertex cover of size k, it has $\leq k(n-1)$ edges.
Pf. Each vertex covers at most $n-1$ edges.

Finding small vertex covers: algorithm

Claim. The following algorithm determines if G has a vertex cover of size $\leq k$ in $\mathrm{O}\left(2^{k} k n\right)$ time.

```
Vertex-Cover(G, k) {
    if (G contains no edges) return true
    if (G contains \geq kn edges) return false
    let (u, v) be any edge of G
    a = Vertex-Cover(G - {u}, k-1)
    b = Vertex-Cover(G - {v}, k-1)
    return a or b
}
```

Pf.

- Correctness follows from previous two claims.
- There are $\leq 2^{k+1}$ nodes in the recursion tree; each invocation takes $\mathrm{O}(k n)$ time. •

Finding small vertex covers: recursion tree

$$
T(n, k) \leq\left\{\begin{array}{ll}
c & \text { if } k=0 \\
c n & \text { if } k=1 \\
2 T(n, k-1)+c k n & \text { if } k>1
\end{array} \quad \Rightarrow T(n, k) \leq 2^{k} c k n\right.
$$

10. Extending Tractability

- finding small vertex covers
- solving NP-hard problems on trees
- circular arc coverings
vertex cover in bipartite graphs

Independent set on trees

Independent set on trees. Given a tree, find a maximum cardinality subset of nodes such that no two share an edge.

Fact. A tree on at least two nodes has at least two leaf nodes.

Key observation. If v is a leaf, there exists a maximum size independent set containing v.

Pf. (exchange argument)

- Consider a max cardinality independent set S.
- If $v \in S$, we're done.
- If $u \notin S$ and $v \notin S$, then $S \cup\{v\}$ is independent $\Rightarrow S$ not maximum.
- If $u \in S$ and $v \notin S$, then $S \cup\{v\}-\{u\}$ is independent. -

Independent set on trees: greedy algorithm

Theorem. The following greedy algorithm finds a maximum cardinality independent set in forests (and hence trees).

```
Independent-Set-In-A-Forest(F) {
    S}\leftarrow
    while (F has at least one edge) {
        Let e = (u, v) be an edge such that v is a leaf
        Add v to S
        Delete from F nodes }u\mathrm{ and v, and all edges
        incident to them.
    }
    return S U { isolated vertices in F }
}
```

Pf. Correctness follows from the previous key observation. -

Remark. Can implement in $O(n)$ time by considering nodes in postorder.

Weighted independent set on trees

Weighted independent set on trees. Given a tree and node weights $w_{v}>0$, find an independent set S that maximizes $\Sigma_{v \in S} w_{v}$.

Observation. If (u, v) is an edge such that v is a leaf node, then either $O P T$ includes u or $O P T$ includes all leaf nodes incident to u.

Dynamic programming solution. Root tree at some node, say r.

- $O P T_{i n}(u)=$ max weight independent set of subtree rooted at u, containing u.
- $O P T_{\text {out }}(u)=$ max weight independent set of subtree rooted at u, not containing u.

$$
\begin{aligned}
& O P T_{\text {in }}(u)=w_{u}+\sum_{v \in \operatorname{children}(u)} O P T_{\text {out }}(v) \\
& O P T_{\text {out }}(u)=\sum_{v \in \operatorname{children}(u)} \max \left\{O P T_{\text {in }}(v), O P T_{\text {out }}(v)\right\}
\end{aligned}
$$

$$
\operatorname{children}(u)=\{v, w, x\}
$$

Weighted independent set on trees: dynamic programming algorithm

Theorem. The dynamic programming algorithm finds a maximum weighted independent set in a tree in $O(n)$ time.

```
Weighted-Independent-Set-In-A-Tree(T) {
    Root the tree at a node r
    foreach (node u of T in postorder) {
        if (u is a leaf) {
            Min
            M Mout [u] = 0
        }
        else {
            Min}[u]=\mp@subsup{w}{u}{}+\mp@subsup{\Sigma}{v\inchildren(u)}{}\mp@subsup{M}{\mathrm{ out }}{}[v
```



```
        }
    }
    return max (M M [r], M Mout [r])
}
```


Context

Independent set on trees. This structured special case is tractable because we can find a node that breaks the communication among the subproblems in different subtrees.

see Section 10.4
(but proceed with caution)
Graphs of bounded tree width. Elegant generalization of trees that:

- Captures a rich class of graphs that arise in practice.
- Enables decomposition into independent pieces.

10. Extending Tractability

, finding small vertex covers
, solving NP-hard problems on trees

- circular arc coverings
, vertex cover in bipartite graphs

Wavelength-division multiplexing

Wavelength-division multiplexing (WDM). Allows m communication streams (arcs) to share a portion of a fiber optic cable, provided they are transmitted using different wavelengths.

Ring topology. Special case is when network is a cycle on n nodes.

Bad news. NP-complete, even on rings.

Brute force. Can determine if k colors suffice in $O\left(k^{m}\right)$ time by trying all k-colorings.

Goal. $O(f(k)) \cdot \operatorname{poly}(m, n)$ on rings.

Review: interval coloring

Interval coloring. Greedy algorithm finds coloring such that number of colors equals depth of schedule.
maximum number of streams at one location

Circular arc coloring.

- Weak duality: number of colors \geq depth.
- Strong duality does not hold.

$$
\text { max depth }=2
$$

$$
\min \text { colors }=3
$$

(Almost) transforming circular arc coloring to interval coloring

Circular arc coloring. Given a set of n arcs with depth $d \leq k$, can the arcs be colored with k colors?

Equivalent problem. Cut the network between nodes v_{1} and v_{n}. The arcs can be colored with k colors iff the intervals can be colored with k colors in such a way that "sliced" arcs have the same color.

Circular arc coloring: dynamic programming algorithm

Dynamic programming algorithm.

- Assign distinct color to each interval which begins at cut node v_{0}.
- At each node v_{i}, some intervals may finish, and others may begin.
- Enumerate all k-colorings of the intervals through v_{i} that are consistent with the colorings of the intervals through v_{i-1}.
- The arcs are k-colorable iff some coloring of intervals ending at cut node v_{0} is consistent with original coloring of the same intervals.

Circular arc coloring: running time

Running time. $O(k!\cdot n)$.

- The algorithm has n phases.
- Bottleneck in each phase is enumerating all consistent colorings.
- There are at most k intervals through v_{i}, so there are at most k ! colorings to consider.

Remark. This algorithm is practical for small values of k (say $k=10$) even if the number of nodes n (or paths) is large.

10. EXtending Tractability

, finding small vertex covers

- solving NP-hard problems on trees
- circular are coverings
- vertex cover in bipartite graphs

Vertex cover

Given a graph $G=(V, E)$ and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \leq k$, and for each edge (u, v) either $u \in S$ or $v \in S$ or both?

vertex cover $S=\left\{3,4,5,1^{\prime}, 2^{\prime}\right\}$

Vertex cover and matching

Weak duality. Let M be a matching, and let S be a vertex cover. Then, $|M| \leq|S|$.

Pf. Each vertex can cover at most one edge in any matching.

matching M: 1-1', 2-2', 3-4', 4-5'

Vertex cover in bipartite graphs: König-Egerváry Theorem

Theorem. [König-Egerváry] In a bipartite graph, the max cardinality of a matching is equal to the min cardinality of a vertex cover.

matching M: 1-1', 2-2', 3-4', 4-5' vertex cover $S=\left\{3,4,5,1^{\prime}, 2^{\prime}\right\}$

Proof of König-Egerváry theorem

Theorem. [König-Egerváry] In a bipartite graph, the max cardinality of a matching is equal to the min cardinality of a vertex cover.

- Suffices to find matching M and cover S such that $|M|=|S|$.
- Formulate max flow problem as for bipartite matching.
- Let M be max cardinality matching and let (A, B) be min cut.

Proof of König-Egerváry theorem

Theorem. [König-Egerváry] In a bipartite graph, the max cardinality of a matching is equal to the min cardinality of a vertex cover.

- Suffices to find matching M and cover S such that $|M|=|S|$.
- Formulate max flow problem as for bipartite matching.
- Let M be max cardinality matching and let (A, B) be min cut.
- Define $L_{A}=L \cap A, L_{B}=L \cap B, R_{A}=R \cap A, R_{B}=R \cap B$.
- Claim 1. $S=L_{B} \cup R_{A}$ is a vertex cover.
- consider $(u, v) \in E$
- $u \in L_{A}, v \in R_{B}$ impossible since infinite capacity
- thus, either $u \in L_{B}$ or $v \in R_{A}$ or both
- Claim 2. $|M|=|S|$.
- max-flow min-cut theorem $\Rightarrow|M|=\operatorname{cap}(A, B)$
- only edges of form (s, u) or (v, t) contribute to $\operatorname{cap}(A, B)$
- $|M|=\operatorname{cap}(A, B)=\left|L_{B}\right|+\left|R_{A}\right|=|\mathrm{S}|$.

