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9.  PSPACE

‣ PSPACE complexity class 

‣ quantified satisfiability 

‣ planning problem 

‣ PSPACE-complete

Geography game

Geography.  Alice names capital city c of country she is in. Bob names a 

capital city cʹ that starts with the letter on which c ends. Alice and Bob 

repeat this game until one player is unable to continue. 
Does Alice have a forced win? 

Ex.  Budapest → Tokyo → Ottawa → Ankara → Amsterdam → Moscow → 

Washington → Nairobi → … 

Geography on graphs.  Given a directed graph G = (V, E) and a start node s, 
two players alternate turns by following, if possible, an edge leaving the 

current node to an unvisited node. Can first player guarantee to make the 

last legal move? 

Remark.  Some problems (especially involving 2-player games and AI)  
defy classification according to NP, EXPTIME, NP, and NP-complete.
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9.  PSPACE

‣ PSPACE complexity class 

‣ quantified satisfiability 

‣ planning problem 

‣ PSPACE-complete

PSPACE

P.  Decision problems solvable in polynomial time. 

PSPACE.  Decision problems solvable in polynomial space. 

Observation.  P  ⊆  PSPACE.
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poly-time algorithm 
can consume 

only polynomial space



PSPACE

Binary counter.  Count from 0 to 2n – 1 in binary. 

Algorithm.  Use n bit odometer. 

Claim.  3-SAT ∈ PSPACE. 

Pf. 

・Enumerate all 2n possible truth assignments using counter. 

・Check each assignment to see if it satisfies all clauses.  ▪ 

Theorem.  NP  ⊆  PSPACE. 

Pf.  Consider arbitrary problem Y ∈ NP. 

・Since Y ≤ P 3-SAT, there exists algorithm that solves Y in poly-time plus 

polynomial number of calls to 3-SAT black box. 

・Can implement black box in poly-space.  ▪
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‣ planning problem 

‣ PSPACE-complete

Quantified satisfiability

QSAT.  Let Φ(x1, …,  xn) be a boolean CNF formula. Is the following 

propositional formula true? 

Intuition.  Amy picks truth value for x1, then Bob for x2, then Amy for x3, 
and so on.  Can Amy satisfy Φ no matter what Bob does? 

Ex. 

Yes.  Amy sets x1 true; Bob sets x2; Amy sets x3 to be same as x2. 

Ex. 

No.  If Amy sets x1 false; Bob sets x2 false; Amy loses; 

No.  if Amy sets x1 true; Bob sets x2 true; Amy loses.
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∃ x1   ∀ x2   ∃ x3   ∀ x4  …  ∀ xn-1  ∃ xn  Φ(x1, …, xn)

assume n is odd

€ 

€ 

(x1  ∨  x2 )  ∧  (x2  ∨  x3)  ∧  (x1  ∨  x2  ∨  x3 )

€ 

(x1  ∨  x2  )  ∧  (x2  ∨  x3)  ∧  (x1  ∨  x2  ∨  x3 )

Quantified satisfiability is in PSPACE

Theorem.  Q-SAT ∈ PSPACE. 

Pf.  Recursively try all possibilities. 

・Only need one bit of information from each subproblem. 

・Amount of space is proportional to depth of function call stack.
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∃

∀

x1 = 0

∃ ∃

x2 = 0

x3 = 0

x2 = 1

x3 = 1

∀

∃ ∃

x1 = 1

Φ(0, 0, 0) Φ(0, 0, 1) Φ(0, 1, 0) Φ(0, 1, 1) Φ(1, 0, 0) Φ(1, 0, 1) Φ(1, 1, 0) Φ(1, 1, 1)

return true iff both 
subproblems are true

return true iff either 
subproblem is true
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15-puzzle

8-puzzle, 15-puzzle.  [Noyes Chapman 1874] 

・Board:  3-by-3 grid of tiles labeled 1–8. 

・Legal move:  slide neighboring tile into blank (white) square. 

・Find sequence of legal moves to transform initial configuration into goal 

configuration.
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Planning problem

Conditions.  Set C = { C1, …, Cn }. 

Initial configuration.  Subset c0  ⊆  C of conditions initially satisfied. 

Goal configuration.   Subset c*  ⊆ C of conditions we seek to satisfy. 

Operators.  Set O = { O1, …, Ok }. 

・To invoke operator Oi, must satisfy certain prereq conditions. 

・After invoking Oi certain conditions become true, and certain conditions 

become false. 

PLANNING.  Is it possible to apply sequence of operators to get from initial 

configuration to goal configuration? 

Examples. 

・15-puzzle. 

・Rubik’s cube.  

・Logistical operations to move people, equipment, and materials.
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Planning problem:  8-puzzle

Planning example.  Can we solve the 8-puzzle? 

Conditions.  Cij, 1 ≤  i,  j  ≤  9. 

Initial state.  c0 = { C11, C22, …, C66, C78, C87, C99}. 

Goal state.  c* = {C11, C22, …, C66, C77, C88, C99}. 

Operators. 

・Precondition to apply Oi  =  {C11, C22, …, C66, C78, C87, C99}. 

・After invoking Oi, conditions C79 and C97 become true. 

・After invoking Oi, conditions C78 and C99 become false. 

Solution.  No solution to 8-puzzle or 15-puzzle!
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Cij means tile i is in square j 1 2 3

4 5 6

8 7 9
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Diversion:  Why is 8-puzzle unsolvable?

8-puzzle invariant.  Any legal move preserves the parity of the number of 

pairs of pieces in reverse order (inversions).
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3 inversions  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1 inversion:  7-8

Planning problem:  binary counter

Planning example.  Can we increment an n-bit counter from the all-zeroes 

state to the all-ones state? 

Conditions.   C1, …, Cn. 

Initial state.   c0 = φ. 

Goal state.   c* = {C1, …, Cn }. 

Operators.   O1, …, On. 

・To invoke operator Oi, must satisfy C1, …, Ci–1. 

・After invoking Oi, condition Ci becomes true. 

・After invoking Oi, conditions C1, …, Ci–1 become false. 

Solution.  { } ⇒ {C1}  ⇒  {C2}  ⇒  {C1, C2}  ⇒  {C3}  ⇒  {C3, C1}   ⇒  … 

Observation. Any solution requires at least 2n – 1 steps. 
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Ci corresponds to bit i = 1

all 0s

all 1s

i−1 least significant bits are 1

set bit i to 1

set i−1 least 
significant bits to 0

Planning problem is in EXPTIME

Configuration graph G. 

・Include node for each of 2n possible configurations. 

・Include an edge from configuration cʹ to configuration cʺ if one of the 

operators can convert from cʹ to cʺ. 

PLANNING.  Is there a path from c0 to c* in configuration graph? 

Claim.  PLANNING ∈ EXPTIME. 

Pf.  Run BFS to find path from c0 to c* in configuration graph.  ▪ 

Note.  Configuration graph can have 2n nodes, and shortest path can 
be of length = 2n – 1.
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binary counter

Planning problem is in PSPACE

Theorem.  PLANNING ∈ PSPACE. 

Pf.   

・Suppose there is a path from c1 to c2 of length L. 

・Path from c1 to midpoint and from c2 to midpoint are each ≤  L / 2. 

・Enumerate all possible midpoints. 

・Apply recursively.  Depth of recursion = log2 L.  ▪
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boolean hasPath(c1, c2, L) { 

   if (L ≤ 1) return correct answer 

   foreach configuration c′ { 
      boolean x = hasPath(c1, c′, L/2) 

      boolean y = hasPath(c2, c′, L/2) 
      if (x and y) return true 
   } 

   return false 

}

enumerate using binary counter
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PSPACE-complete

PSPACE.  Decision problems solvable in polynomial space. 

PSPACE-complete.  Problem Y ∈ PSPACE-complete if (i) Y ∈ PSPACE and 
(ii) for every problem X ∈ PSPACE, X ≤ P Y. 

Theorem.  [Stockmeyer–Meyer 1973]  QSAT ∈ PSPACE-complete. 

Theorem.  PSPACE ⊆  EXPTIME. 

Pf.  Previous algorithm solves QSAT in exponential time; and 
QSAT is PSPACE-complete.  ▪ 

Summary.   P  ⊆  NP  ⊆   PSPACE  ⊆  EXPTIME.
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it is known that P ≠ EXPTIME, 
but unknown which inclusion is strict;  

conjectured that all are

PSPACE-complete problems

More PSPACE-complete problems. 

・Competitive facility location. 

・Natural generalizations of games. 
- Othello, Hex, Geography, Rush-Hour, Instant Insanity 
- Shanghai, go-moku, Sokoban 

・Given a memory restricted Turing machine, does it terminate in at most 

k steps? 

・Do two regular expressions describe different languages? 

・Is it possible to move and rotate complicated object with attachments 

through an irregularly shaped corridor? 

・Is a deadlock state possible within a system of communicating 

processors?
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Competitive facility location

Input.  Graph G = (V, E) with positive edge weights, and target B. 

Game.  Two competing players alternate in selecting nodes.  Not allowed to 

select a node if any of its neighbors has been selected. 

Competitive facility location.  Can second player guarantee at least B units 

of profit?
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10 1 5 15 5 1 5 1 15 10

yes if B = 20;
no if B = 25



Competitive facility location

Claim.  COMPETITIVE-FACILITY-LOCATION ∈ PSPACE-complete. 

Pf. 

・To solve in poly-space, use recursion like Q-SAT, but at each step there 

are up to n choices instead of 2. 

・To show that it’s complete, we show that Q-SAT polynomial reduces to 

it. Given an instance of Q-SAT, we construct an instance of COMPETITIVE-

FACILITY-LOCATION so that player 2 can force a win iff Q-SAT formula is 

true.
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Competitive facility location

Construction.  Given instance Φ(x1, …, xn) = C1 ∧ C1 ∧ … Ck of Q-SAT. 

・Include a node for each literal and its negation and connect them. 
(at most one of xi and its negation can be chosen) 

・Choose c  ≥  k + 2, and put weight ci on literal xi and its negation; 
set B = cn–1 + cn–3 + … + c4 + c2 + 1.  
(ensures variables are selected in order xn, xn–1, …, x1) 

・As is, player 2 will lose by 1 unit: cn–1 + cn–3 + … + c4 + c2.
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assume n is odd

Competitive facility location

Construction.  Given instance Φ(x1, …, xn) = C1 ∧ C1 ∧ … Ck of Q-SAT. 

・Give player 2 one last move on which she can try to win. 

・For each clause Cj, add node with value 1 and an edge to each of its 

literals. 

・Player 2 can make last move iff truth assignment defined alternately by 

the players failed to satisfy some clause.  ▪
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