

Assignment problem

Input. Weighted, complete bipartite graph $G=(X \cup Y, E)$ with $|X|=|Y|$. Goal. Find a perfect matching of \min weight.

7. Network Flow III

- assignment problem
- input-queued switching

Assignment problem

Input. Weighted, complete bipartite graph $G=(X \cup Y, E)$ with $|X|=|Y|$. Goal. Find a perfect matching of min weight.

min-cost perfect matching
M = \{ 0-2', 1-0', 2-1'
$\operatorname{cost}(M)=3+5+4=12$

Princeton writing seminars

Goal. Given m seminars and $n=12 m$ students who rank their top 8 choices, assign each student to one seminar so that:

- Each seminar is assigned exactly 12 students.
- Students tend to be "happy" with their assigned seminar.

Solution.

- Create one node for each student i and 12 nodes for each seminar j.
- Solve assignment problem where $c_{i j}$ is some function of the ranks:

$$
c_{i j}= \begin{cases}f(\operatorname{rank}(i, j)) & \text { if } i \text { ranks } j \\ \infty & \text { if } i \text { does not rank } j\end{cases}
$$

Title	Course \#	Professor	DayTime	Location
19805, The	WR11 68	Scott, Andrea	M/W 1:30pm.2:50pm	Hargadon 6002
America and the Melting Pot	WR1 157	Skinazi, karen	T/TH $8: 30 \mathrm{~mm} \cdot 9.50 \mathrm{am}$	Buter 226
America and the Melting Pot	WR1 158	Skinazi, Karen	T/TH 11:00am-12:200m	Hargadon 6004
American Mysticism	WR1 191	Laufeners, George	T/TH7:30pm.8.50pm	99 Alexande
American Revolutions	We1 184	Grosghal, Dov	M.W.30am-9:5am	Buter 226
Animal Mind, The	WR1 101	Gould, James	M/W8:30am.9:5am	Blair ${ }^{\text {a }}$
Atrof Adventure, The	WR1 15	Hoffit, Anne	TH 11:00am-12:	Buter 027

Kidney exchange

If a donor and recipient have a different blood type, they can exchange their kidneys with another donor and recipient pair in a similar situation.

Can also be done among multiple pairs (or starting with an altruistic donor).

Locating objects in space

Goal. Given n objects in 3 d space, locate them with 2 sensors.

Solution.

- Each sensor computes line from it to each particle.
- Let $c_{i j}=$ distance between line i from censor 1 and line j from sensor 2.
- Due to measurement errors, we might have $c_{i j}>0$.
- Solve assignment problem to locate n objects.
\qquad
Algorithm for Ranked Assignments with Applications to Multiobject Tracking
\qquad

Kidney exchange

weight $=3+5+7+8+4=27$

Applications

Natural applications.

- Match jobs to machines.
- Match personnel to tasks.
- Match PU students to writing seminars.

Non-obvious applications.

- Vehicle routing.
- Kidney exchange.
- Signal processing.
- Earth-mover's distance.
- Multiple object tracking
- Virtual output queueing
- Handwriting recognition.
- Locating objects in space.
- Approximate string matching.
- Enhance accuracy of solving linear systems of equations.

Alternating path

Def. An alternating path P with respect to a matching M is an alternating sequence of unmatched and matched edges, starting from an unmatched node $x \in X$ and going to an unmatched node $y \in Y$.

Key property. Can use P to increase by one the cardinality of the matching.
Pf. Set $M^{\prime}=M \oplus P$.
symmetric difference

matching M

alternating path \mathbf{P}

matching \mathbf{M}^{\prime}

Bipartite matching

Bipartite matching. Can solve via reduction to maximum flow.

Flow. During Ford-Fulkerson, all residual capacities and flows are 0-1; flow corresponds to edges in a matching M.

Residual graph G_{M} simplifies to:

- If $(x, y) \notin M$, then (x, y) is in G_{M}.
- If $(x, y) \in M$, then (y, x) is in G_{M}.

Augmenting path simplifies to:

- Edge from s to an unmatched node $x \in X$,
- Alternating sequence of unmatched and matched edges,
- Edge from unmatched node $y \in Y$ to t.

Assignment problem: successive shortest path algorithm

Cost of alternating path. Pay $c(x, y)$ to match $x-y$; receive $c(x, y)$ to unmatch.

$P=2 \rightarrow 2 ' \rightarrow 1 \rightarrow 1^{\prime}$
$\operatorname{cost}(\mathrm{P})=2-6+10=6$

Shortest alternating path. Alternating path from any unmatched node $x \in X$ to any unmatched node $y \in Y$ with smallest cost.

Successive shortest path algorithm.

- Start with empty matching.
- Repeatedly augment along a shortest alternating path.

Finding the shortest alternating path

Shortest alternating path. Corresponds to minimum cost $s \rightarrow t$ path in G_{M}.

Concern. Edge costs can be negative.

Fact. If always choose shortest alternating path, then G_{M} contains no negative cycles \Rightarrow can compute using Bellman-Ford.

Our plan. Use duality to avoid negative edge costs (and negative cycles) \Rightarrow can compute using Dijkstra.

Equivalent assignment problem

Duality intuition. Subtracting a constant $p(y)$ to the cost of every edge incident to node $y \in Y$ does not change the min-cost perfect matching(s).

Pf. Every perfect matching uses exactly one edge incident to node y. -

original costs $\mathbf{c}(\mathbf{x}, \mathrm{y})$

modified costs $\mathbf{c}^{\prime}(\mathbf{x}, \mathrm{y})$

X

Equivalent assignment problem

Duality intuition. Adding a constant $p(x)$ to the cost of every edge incident to node $x \in X$ does not change the min-cost perfect matching(s).

Pf. Every perfect matching uses exactly one edge incident to node x.

Reduced costs

Reduced costs. For $x \in X, y \in Y$, define $c^{p}(x, y)=p(x)+c(x, y)-p(y)$.

Observation 1. Finding a min-cost perfect matching with reduced costs is equivalent to finding a min-cost perfect matching with original costs.

Compatible prices

Compatible prices. For each node $v \in X \cup Y$, maintain prices $p(v)$ such that:

- $c^{p}(x, y) \geq 0$ for all $(x, y) \notin M$.
- $c^{p}(x, y)=0$ for all $(x, y) \in M$.

Observation 2. If prices p are compatible with a perfect matching M, then M is a min-cost perfect matching.

Pf. Matching M has 0 cost. -

Successive shortest path algorithm

Initialization.

- $M=\varnothing$.
- For each $v \in X \cup Y: p(v) \leftarrow 0$.

Successive shortest path algorithm

Successive-Shortest-Path (X, Y, c)

While (M is not a perfect matching)
$d \leftarrow$ shortest path distances using costs c^{p}.
$P \leftarrow$ shortest alternating path using costs c^{p}.
$M \leftarrow$ updated matching after augmenting along P.
FOREACH $v \in X \cup Y: p(v) \leftarrow p(v)+d(v)$.

RETURN M.

Successive shortest path algorithm

Initialization.

- $M=\varnothing$.
- For each $v \in X \cup Y: p(v) \leftarrow 0$.

Successive shortest path algorithm

Step 1.

- Compute shortest path distances $d(v)$ from s to v using $c^{p}(x, y)$.
- Update matching M via shortest path from s to t.
- For each $v \in X \cup Y: p(v) \leftarrow p(v)+d(v)$.

Successive shortest path algorithm

Step 1.

- Compute shortest path distances $d(v)$ from s to v using $c^{p}(x, y)$.
- Update matching M via shortest path from s to t.
- For each $v \in X \cup Y: p(v) \leftarrow p(v)+d(v)$.

Successive shortest path algorithm

Step 1.

- Compute shortest path distances $d(v)$ from s to v using $c^{p}(x, y)$.
- Update matching M via shortest path from s to t.
- For each $v \in X \cup Y: p(v) \leftarrow p(v)+d(v)$.

Successive shortest path algorithm

Step 2.

- Compute shortest path distances $d(v)$ from s to v using $c^{p}(x, y)$.
- Update matching M via shortest path from s to t.
- For each $v \in X \cup Y: p(v) \leftarrow p(v)+d(v)$.

Successive shortest path algorithm

Step 2.

- Compute shortest path distances $d(v)$ from s to v using $c^{p}(x, y)$.
- Update matching M via shortest path from s to t.
- For each $v \in X \cup Y: p(v) \leftarrow p(v)+d(v)$.

Successive shortest path algorithm

Step 3.

- Compute shortest path distances $d(v)$ from s to v using $c^{p}(x, y)$.
- Update matching M via shortest path from s to t.
- For each $v \in X \cup Y: p(v) \leftarrow p(v)+d(v)$.

Successive shortest path algorithm

Step 2.

- Compute shortest path distances $d(v)$ from s to v using $c^{p}(x, y)$.
- Update matching M via shortest path from s to t.
- For each $v \in X \cup Y: p(v) \leftarrow p(v)+d(v)$.

Successive shortest path algorithm

Step 3.

- Compute shortest path distances $d(v)$ from s to v using $c^{p}(x, y)$.
- Update matching M via shortest path from s to t.
- For each $v \in X \cup Y: p(v) \leftarrow p(v)+d(v)$.

Successive shortest path algorithm

Step 3.

- Compute shortest path distances $d(v)$ from s to v using $c^{p}(x, y)$.
- Update matching M via shortest path from s to t.
- For each $v \in X \cup Y: p(v) \leftarrow p(v)+d(v)$.

Maintaining compatible prices

Lemma 1. Let p be compatible prices for M. Let d be shortest path distances in G_{M} with costs c^{p}. All edges (x, y) on shortest path have $c^{p+d}(x, y)=$ 0.

$$
\Sigma_{\text {forward or reverse edges }}
$$

Pf. Let (x, y) be some edge on shortest path.

- If $(x, y) \in M$, then (y, x) on shortest path and $d(x)=d(y)-c^{p}(x, y)$; If $(x, y) \notin M$, then (x, y) on shortest path and $d(y)=d(x)+c^{p}(x, y)$.
- In either case, $d(x)+c^{p}(x, y)-d(y)=0$.
- By definition, $c^{p}(x, y)=p(x)+c(x, y)-p(y)$.
- Substituting for $c^{p}(x, y)$ yields $(p(x)+d(x))+c(x, y)-(p(y)+d(y))=0$
- In other words, $c^{p+d}(x, y)=0$.

Successive shortest path algorithm

Termination.

- M is a perfect matching.
- Prices p are compatible with M.

Maintaining compatible prices

Lemma 2. Let p be compatible prices for M. Let d be shortest path distances in G_{M} with costs c^{p}. Then $p^{\prime}=p+d$ are also compatible prices for M.

Pf. $(x, y) \in M$

- (y, x) is the only edge entering x in G_{M}. Thus, (y, x) on shortest path.
- By Lemma 1, $c^{p+d}(x, y)=0$.

Pf. $(x, y) \notin M$

- (x, y) is an edge in $G_{M} \Rightarrow d(y) \leq d(x)+c^{p}(x, y)$.
- Substituting $c^{p}(x, y)=p(x)+c(x, y)-p(y) \geq 0$ yields $(p(x)+d(x))+c(x, y)-(p(y)+d(y)) \geq 0$.
- In other words, $c^{p+d}(x, y) \geq 0$. -

Given prices p, the reduced cost of edge (x, y) is $c^{p}(x, y)=p(x)+c(x, y)-p(y)$.

> Prices p are compatible with matching M :
> • $c^{p}(x, y) \geq 0$ for all $(x, y) \notin M$.
> $\cdot c^{p}(x, y)=0$ for all $(x, y) \in M$.

Maintaining compatible prices

Lemma 3. Let p be compatible prices for M and let M^{\prime} be matching obtained by augmenting along a min cost path with respect to c^{p+d}. Then $p^{\prime}=p+d$ are compatible prices for M^{\prime}.

Pf.

- By Lemma 2, the prices $p+d$ are compatible for M.
- Since we augment along a min-cost path, the only edges (x, y) that swap into or out of the matching are on the min-cost path.
- By Lemma 1 , these edges satisfy $c^{p+d}(x, y)=0$.
- Thus, compatibility is maintained. -

> Prices p are compatible with matching M :
> - $c^{p}(x, y) \geq 0$ for all $(x, y) \notin M$.
> - $c^{p}(x, y)=0$ for all $(x, y) \in M$.

Weighted bipartite matching

Weighted bipartite matching. Given a weighted bipartite graph with n nodes and m edges, find a maximum cardinality matching of minimum weight.

Theorem. [Fredman-Tarjan 1987] The successive shortest path algorithm solves the problem in $O\left(n^{2}+m n \log n\right)$ time using Fibonacci heaps.

Theorem. [Gabow-Tarjan 1989] There exists an $O\left(m n^{1 / 2} \log (n C)\right)$ time algorithm for the problem when the costs are integers between 0 and C.


```
    FASTER SCALING ALGORITHMS FOR NETWORK PROBLEMS*
        harold n. gabowt and robert e. tarJaN#
    Abstract."This paper presents algorithms forthe asismment problem,the transportation
Costs)
```



```
worerofedges, and largest magnitud of a cost; costs are assumed to be integral. The algorithm
optyy scaing, As in the work of Golaberg and Tarjan
```


Successive shortest path algorithm: analysis

Invariant. The algorithm maintains a matching M and compatible prices p. Pf. Follows from Lemma 2 and Lemma 3 and initial choice of prices.

Theorem. The algorithm returns a min-cost perfect matching Pf. Upon termination M is a perfect matching, and p are compatible prices. Optimality follows from Observation 2. -

Theorem. The algorithm can be implemented in $O\left(n^{3}\right)$ time. Pf.

- Each iteration increases the cardinality of M by $1 \Rightarrow n$ iterations.
- Bottleneck operation is computing shortest path distances d. Since all costs are nonnegative, each iteration takes $O\left(n^{2}\right)$ time using (dense) Dijkstra.

History

Thorndike 1950. Formulated in a modern way by a psychologist.

```
PSYCHOMETRRK,-MoL, 15, No.3
```

the problem of classification of personnel
Robert L. Thoradike
tachers college, columbia university

Assign individuals to jobs to maximize average success of all individuals.

History

Thorndike 1950. Formulated in a modern way by a psychologist.

There are, as has been indicated, a finite number of permutations in the assignment of men to jobs. When the classification problem as formulated above was presented to a mathematician, he pointed to this fact and said that from the point of view of the mathematician there was no problem. Since the number of permutations was finite, one had only to try them all and choose the best. He dismissed the problem at that point. This is rather cold comfort to the psychologist, however, when one considers that only ten men and ten jobs mean over three and a half million permutations. Trying out all the permutations may be a mathematical solution to the problem, it is not a practical solution.
anticipated theory of computational complexity!

History

Jacobi (1804-1851). Introduces a bound on the order of a system of m ordinary differential equations in m unknowns and reduces it to....

Looking for the order of a system of arbitrary ordinary differential equations

History

Kuhn 1955. First poly-time algorithm; named "Hungarian" algorithm to honor two Hungarian mathematicians (Kőnig and Egerváry).

Munkres 1957. Reviewed algorithm; observed $O\left(n^{4}\right)$ implementation.

Edmonds-Karp, Tomizawa 1971. Improved to $O\left(n^{3}\right)$.
the hungarian method for the assignment problem ${ }^{1}$

$$
\begin{gathered}
\text { Bryn Mave } \\
\text { H. Wubr } \\
\text { Kollege }
\end{gathered}
$$

anticipated development of combinatorial optimization

History

Jacobi (1804-1851). The assignment problem! Moreover, he provides a polynomial-time algorithm.

earum systema appllabo schema proposium; omne schema inde ortum ad-
dendo singulis jusudem seriei horizontalis terminis eandem quantitatem apellabo
schema derieatum. Sil
quantius addenda terrinis ${ }^{\text {row }}$, seriei horizontalis, quo facto singula $1.2 . . . \mathrm{n}$
aggregata transersalia, inter quae maximum eligendum est, enden augebuntur
aggrogatat transersaia, into
$l^{\prime}+l^{\prime \prime}+\cdots+l^{(n)}=L$
quipe ad singula aggregata formanda e quaqua serie horizonalli uns eligendas
est teerminus. Qua de

- $x^{2(0)+4 n}=p^{(n)}$
atque aggregtum transerersale maximum e terminis h^{n} f formatum
$p_{1}^{(4)}+p^{(1)}+\cdots+p_{p}^{(4)}=\boldsymbol{H}+L$

Jacobi formulated the assignment problem; proposed and analyzed the Hungarian algorithm

7. Network Flow III

p assignment problem

- input-queued switching

Input-queved switching

Input-queued switch.

- n input ports and n output ports in an n-by- n crossbar layout.
- At most one cell can depart an input at a time.
- At most one cell can arrive at an output at a time.
- Cell arrives at input x and must be routed to output y.

Application. High-bandwidth switches.
inputs

outputs

FIFO queuing

FIFO queueing. Each input x maintains one queue of cells to be routed.

Head-of-line blocking (HOL). A cell can be blocked by a cell queued ahead of it that is destined for a different output.

Fact. FIFO can limit throughput to 58% even when arrivals are uniform i.i.d.

Input Versus Output Queueing on a Space-Division
Input Versus Output Queueing on a Space-Division
Packét Switch

Virtual output queueing

Virtual output queueing (VOQ). Each input x maintains n queues of cells, one for each output y.

Maximum-size matching. Find a max cardinality matching.
Fact. VOQ achieves 100% throughput when arrivals are uniform i.i.d but can starve input-queues when arrivals are nonuniform

outputs

Input-queued switching

Maximum-weight matching. Find a min cost perfect matching between inputs x and outputs y, where $c(x, y)$ equals

- [LQF] The number of cells waiting to go from input x to output y.
- [OCF] The waiting time of the cell at the head of VOQ from x to y.

Theorem. LQF and OCF achieve 100% throughput if arrivals are independent (even if not uniform).

Practice.

- Assignment problem too slow in practice.
- Difficult to implement in hardware.
- Provides theoretical framework: use maximal (weighted) matching.

Achieving 100\% Throughput in an Input-Queued Switch

