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7.  NETWORK FLOW II

‣ bipartite matching 

‣ disjoint paths 

‣ extensions to max flow 

‣ survey design 

‣ airline scheduling 

‣ image segmentation 

‣ project selection 

‣ baseball elimination



Minimum cut application (RAND 1950s)

“Free world” goal.  Cut supplies (if Cold War turns into real war).

Figure 2
From Harris and Ross [1955]: Schematic diagram of the railway network of the Western So-
viet Union and Eastern European countries, with a maximum flow of value 163,000 tons from
Russia to Eastern Europe, and a cut of capacity 163,000 tons indicated as ‘The bottleneck’.
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rail network connecting Soviet Union with Eastern European countries
(map declassified by Pentagon in 1999)



Maximum flow application (Tolstoǐ 1930s)

Soviet Union goal.  Maximize flow of supplies to Eastern Europe.

Figure 2
From Harris and Ross [1955]: Schematic diagram of the railway network of the Western So-
viet Union and Eastern European countries, with a maximum flow of value 163,000 tons from
Russia to Eastern Europe, and a cut of capacity 163,000 tons indicated as ‘The bottleneck’.
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Max-flow and min-cut applications

Max-flow and min-cut problems are widely applicable model. 

・Data mining. 

・Open-pit mining. 

・Bipartite matching. 

・Network reliability. 

・Baseball elimination. 

・Image segmentation. 

・Network connectivity. 

・Markov random fields. 

・Distributed computing. 

・Security of statistical data. 

・Egalitarian stable matching. 

・Network intrusion detection. 

・Multi-camera scene reconstruction. 

・Sensor placement for homeland security. 

・Many, many, more.
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‣ bipartite matching 
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‣ extensions to max flow 

‣ survey design 

‣ airline scheduling 
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Def. Given an undirected graph G = (V, E), subset of edges M ⊆ E  
is a matching if each node appears in at most one edge in M. 

 

Max matching.  Given a graph G, find a max-cardinality matching.

Matching
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Bipartite matching

Def.  A graph G is bipartite if the nodes can be partitioned into two subsets 

L and R such that every edge connects a node in L with a node in R. 
 

Bipartite matching.  Given a bipartite graph G = (L ∪ R, E), find a max-

cardinality matching.
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Bipartite matching:  max-flow formulation

Formulation. 

・Create digraph Gʹ = (L ∪ R ∪ {s, t},  E ʹ ). 

・Direct all edges from L to R, and assign infinite (or unit) capacity. 

・Add unit-capacity edges from s to each node in L. 

・Add unit-capacity edges from each node in R to t.
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Max-flow formulation:  proof of correctness

Theorem.  1–1 correspondence between matchings of cardinality k in G 
and integral flows of value k in G ʹ. 

Pf.  ⇒ 

・Let M be a matching in G of cardinality k. 

・Consider flow f  that sends 1 unit on each of the k corresponding paths. 

・f is a flow of value k.   ▪
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Max-flow formulation:  proof of correctness

Theorem.  1–1 correspondence between matchings of cardinality k in G 
and integral flows of value k in G ʹ. 

Pf.  ⇐ 

・Let f be an integral flow in G ʹ of value k. 

・Consider M = set of edges from L to R with f(e) = 1. 
- each node in L and R participates in at most one edge in M 
- ⎢M ⎢ = k : apply flow-value lemma to cut (L ∪ {s}, R ∪ {t})   ▪
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Max-flow formulation:  proof of correctness

Theorem.  1–1 correspondence between matchings of cardinality k in G 
and integral flows of value k in G ʹ. 

Corollary.  Can solve bipartite matching problem via max-flow formulation. 

Pf. 

・Integrality theorem  ⇒  there exists a max flow f * in G ʹ that is integral. 

・1–1 correspondence  ⇒  f * corresponds to max-cardinality matching.  ▪
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Network flow II:  quiz 1

What is running time of Ford–Fulkerson algorithms to find a max-
cardinality matching in a bipartite graph with ⎟ L⎟ = ⎟ R⎟ = n ?  

A. O(m + n)

B. O(mn)

C. O(mn2)

D. O(m2n)
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Perfect matchings in bipartite graphs

Def. Given a graph G = (V, E), a subset of edges M ⊆ E is a perfect matching 

if each node appears in exactly one edge in M. 

 

Q.  When does a bipartite graph have a perfect matching? 

 

Structure of bipartite graphs with perfect matchings.  

・Clearly, we must have ⎟ L⎟ = ⎟ R⎟. 

・Which other conditions are necessary? 

・Which other conditions are sufficient?

13



Perfect matchings in bipartite graphs

Notation.  Let S be a subset of nodes, and let N(S) be the set of nodes 

adjacent to nodes in S. 

 

Observation.  If a bipartite graph G = (L ∪ R, E) has a perfect matching, 

then ⎟ N(S)⎟  ≥ ⎟ S⎟ for all subsets S ⊆ L. 

Pf.  Each node in S has to be matched to a different node in N(S).  ▪

14

1

2

3

4

5

1'

2'

3'

4'

5'

S = { 2, 4, 5 }
N(S) = { 2', 5' }

2

4

5

2'

5'

no perfect matching



Hall’s marriage theorem

Theorem. [Frobenius 1917, Hall 1935]   Let G = (L ∪ R, E) be a bipartite graph 

with ⎟ L⎟  = ⎟ R⎟. Then, graph G has a perfect matching iff ⎟ N(S)⎟  ≥ ⎟ S⎟ for all 

subsets S ⊆ L. 

 

Pf.  ⇒  This was the previous observation.
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Hall’s marriage theorem

Pf.  ⇐  Suppose G does not have a perfect matching. 

・Formulate as a max-flow problem and let (A, B) be a min cut in G ʹ. 

・By max-flow min-cut theorem, cap(A, B) < ⎟ L⎟. 

・Define LA = L ∩ A,  LB = L ∩ B,  RA = R ∩ A. 

・cap(A, B)  =  ⎟ LB⎟  +  ⎟ RA⎟   ⇒  ⎟ RA⎟  <  ⎟ LA⎟. 

・Min cut can’t use ∞ edges  ⇒  N(LA)  ⊆  RA. 

・⎟ N(LA)⎟  ≤ ⎟ RA⎟  <  ⎟ LA⎟. 

・Choose S = LA .  ▪
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Problem.  Given a bipartite graph, find a max-cardinality matching.

year worst case technique discovered by

1955 O(m n) augmenting path Ford–Fulkerson

1973 O(m n1/2) blocking flow Hopcroft–Karp, Karzanov

2004 O(n2.378) fast matrix multiplication Mucha–Sankowsi

2013 Õ(m10/7) electrical flow Mądry

20xx

Bipartite matching
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running time for finding a max-cardinality matching in a bipartite graph with n nodes and m edges



Network flow II:  quiz 2

 Which of the following are properties of the graph G = (V, E)?  

A. G has a perfect matching.

B. Hall’s condition is satisfied:  ⎟ N(S)⎟  ≥ ⎟ S⎟ for all subsets S ⊆ V.

C. Both A and B.

D. Neither A nor B.
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Nonbipartite matching

Problem.  Given an undirected graph, find a max-cardinality matching. 

・Structure of nonbipartite graphs is more complicated. 

・But well understood.   [Tutte–Berge formula, Edmonds–Gallai] 

・Blossom algorithm:  O(n4).  [Edmonds 1965] 

・Best known:  O(m n1/2).   [Micali–Vazirani 1980, Vazirani 1994]
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PATHS, TREES, AND FLOWERS 

JACK EDMONDS 

1. Introduction. A graph G for purposes here is a finite set of elements 
called vertices and a finite set of elements called edges such that each edge 
meets exactly two vertices, called the end-points of the edge. An edge is said 
to join its end-points. 

A matching in G is a subset of its edges such that no two meet the same 
vertex. We describe an efficient algorithm for finding in a given graph a match-
ing of maximum cardinality. This problem was posed and partly solved by 
C. Berge; see Sections 3.7 and 3.8. 

Maximum matching is an aspect of a topic, treated in books on graph 
theory, which has developed during the last 75 years through the work of 
about a dozen authors. In particular, W. T. Tutte (8) characterized graphs 
which do not contain a perfect matching, or 1-factor as he calls it—that is a 
set of edges with exactly one member meeting each vertex. His theorem 
prompted attempts at finding an efficient construction for perfect matchings. 

This and our two subsequent papers will be closely related to other work on 
the topic. Most of the known theorems follow nicely from our treatment, 
though for the most part they are not treated explicitly. Our treatment is 
independent and so no background reading is necessary. 

Section 2 is a philosophical digression on the meaning of "efficient algorithm." 
Section 3 discusses ideas of Berge, Norman, and Rabin with a new proof of 
Berge's theorem. Section 4 presents the bulk of the matching algorithm. 
Section 7 discusses some refinements of it. 

There is an extensive combinatorial-linear theory related on the one hand 
to matchings in bipartite graphs and on the other hand to linear programming. 
It is surveyed, from different viewpoints, by Ford and Fulkerson in (5) and 
by A. J. Hoffman in (6). They mention the problem of extending this relation-
ship to non-bipartite graphs. Section 5 does this, or at least begins to do it. 
There, the Kônig theorem is generalized to a matching-duality theorem for 
arbitrary graphs. This theorem immediately suggests a polyhedron which in a 
subsequent paper (4) is shown to be the convex hull of the vectors associated 
with the matchings in a graph. 

Maximum matching in non-bipartite graphs is at present unusual among 
combinatorial extremum problems in that it is very tractable and yet not of 
the "unimodular" type described in (5 and 6). 

Received November 22, 1963. Supported by the O.N.R. Logistics Project at Princeton 
University and the A.R.O.D. Combinatorial Mathematics Project at N.B.S. 
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1. I n t r o d u c t i o n  

Finding a maximum matching in a graph is a classical problem in the study 
of algorithms. In this paper we present new algorithmically relevant combinatorial 
structure of matchings. This structure yields the first proof of correctness of the 
general graph matching algorithm of Mieali and Vazirani [14]; this is currently the 
most efficient known matching algorithm. 

Berge's theorem [2], which says that  matching M in graph G is a maximum 
matching if and only if there are no augmenting paths w.r.t, it, gives an iterative 
schema for finding a maximum matching in G, i.e. successively find augmenting 
paths. Finding augmenting paths is fairly easy in bipartite graphs; however, not 
so in general graphs (see [13] for a detailed history of the problem). The first 
polynomial time algorithm (o(rvI4)) for general graph matching was given by 
Edmonds [4]. In this paper, Edmonds introduced the notion of blossom (an odd 
length alternating cycle), and showed that  by "shrinking" blossoms, one can find 
augmenting path efficiently. In this seminal paper, Edmonds also introduced the 
notion of a polynomial time algorithm. 

Over the years, faster implementations of Edmonds' algorithm were given by 
several authors, including Whitzgall and Zahn [16], Balinski [1], Gabow [6], Lawler 
[12], and Kameda and Munro [10]. In 1972, Hopcroft and Karp [9] proposed finding 
augmenting paths in phases; in each phase a maximal set of disjoint minimum length 
augmenting paths is found. They showed that  only O ( v / ~ )  phases are needed, 
as opposed to O(IV]) iterations in the previously-mentioned schema. They also 
presented an O(IEI)  implementation of a phase in bipartite graphs, thereby giving 
an O(Iv/~llEi) matching algorithm for such graphs, and left the open problem of 

1 Partially supported by an NSF PYI Grant with matching funds from AT&; T Bell Labs at 
Cornell University 

AMS subject classification codes (1991): 05 C 70, 05 C 85 



450 JACK EDMONDS 

Section 6 presents a certain invariance property of the dual to maximum 
matching. 

In paper (4), the algorithm is extended from maximizing the cardinality 
of a matching to maximizing for matchings the sum of weights attached to the 
edges. At another time, the algorithm will be extended from a capacity of one 
edge at each vertex to a capacity of dt edges at vertex vt. 

This paper is based on investigations begun with G. B. Dantzig while at 
the RAND Combinatorial Symposium during the summer of 1961. I am 
indebted to many people, at the Symposium and at the National Bureau of 
Standards, who have taken an interest in the matching problem. There has 
been much animated discussion on possible versions of an algorithm. 

2. Digression. An explanation is due on the use of the words "efficient 
algorithm." First, what I present is a conceptual description of an algorithm 
and not a particular formalized algorithm or "code." 

For practical purposes computational details are vital. However, my 
purpose is only to show as attractively as I can that there is an efficient 
algorithm. According to the dictionary, "efficient" means "adequate in opera-
tion or performance." This is roughly the meaning I want—in the sense that 
it is conceivable for maximum matching to have no efficient algorithm. Perhaps 
a better word is "good." 

I am claiming, as a mathematical result, the existence of a good algorithm 
for finding a maximum cardinality matching in a graph. 

There is an obvious finite algorithm, but that algorithm increases in difficulty 
exponentially with the size of the graph. It is by no means obvious whether 
or not there exists an algorithm whose difficulty increases only algebraically 
with the size of the graph. 

The mathematical significance of this paper rests largely on the assumption 
that the two preceding sentences have mathematical meaning. I am not 
prepared to set up the machinery necessary to give them formal meaning, nor 
is the present context appropriate for doing this, but I should like to explain 
the idea a little further informally. I t may be that since one is customarily 
concerned with existence, convergence, finiteness, and so forth, one is not in-
clined to take seriously the question of the existence of a better-than-finite 
algorithm. 

The relative cost, in time or whatever, of the various applications of a 
particular algorithm is a fairly clear notion, at least as a natural phenomenon. 
Presumably, the notion can be formalized. Here "algorithm" is used in the 
strict sense co mean the idealization of some physical machinery which gives 
a definite output, consisting of cost plus the desired result, for each member of 
a specified domain of inputs, the individual problems. 

The problem-domain of applicability for an algorithm often suggests for 
itself possible measures of size for the individual problems—for maximum 
matching, for example, the number of edges or the number of vertices in the 

Historical significance (Jack Edmonds 1965)
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HACKATHON PROBLEM

Hackathon problem. 

・Hackathon attended by n Harvard students and n Princeton students. 

・Each Harvard student is friends with exactly k > 0 Princeton students; 

each Princeton student is friends with exactly k Harvard students. 

・Is it possible to arrange the hackathon so that each Princeton student 

pair programs with a different friend from Harvard? 

 

 

Mathematical reformulation.  Does every k-regular 

bipartite graph have a perfect matching? 

 

Ex.  Boolean hypercube.

2-regular bipartite graph
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7.  NETWORK FLOW II

‣ bipartite matching 

‣ disjoint paths 

‣ extensions to max flow 

‣ survey design 

‣ airline scheduling 

‣ image segmentation 

‣ project selection 

‣ baseball elimination
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Edge-disjoint paths

Def.  Two paths are edge-disjoint if they have no edge in common. 

 

Edge-disjoint paths problem.  Given a digraph G = (V, E) and two nodes 

s and t, find the max number of edge-disjoint s↝t paths. 

 

Ex.  Communication networks.
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Def.  Two paths are edge-disjoint if they have no edge in common. 

 

Edge-disjoint paths problem.  Given a digraph G = (V, E) and two nodes 

s and t, find the max number of edge-disjoint s↝t paths. 

 

Ex.  Communication networks.

digraph G
2 edge-disjoint paths
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Edge-disjoint paths

Max-flow formulation.  Assign unit capacity to every edge. 

 

Theorem.  1–1 correspondence between k edge-disjoint s↝t paths in G 
and integral flows of value k in G ʹ. 

Pf.  ⇒  

・Let P1, …, Pk be k edge-disjoint s↝t paths in G . 

・Set 

・Since paths are edge-disjoint, f is a flow of value k.   ▪
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Edge-disjoint paths

Max-flow formulation.  Assign unit capacity to every edge. 

 

Theorem.  1–1 correspondence between k edge-disjoint s↝t paths in G 
and integral flows of value k in G ʹ. 

Pf.  ⇐ 

・Let f be an integral flow in G ʹ of value k. 

・Consider edge (s, u) with f(s, u) = 1. 
- by flow conservation, there exists an edge (u, v) with f(u, v) = 1 
- continue until reach t, always choosing a new edge 

・Produces k (not necessarily simple) edge-disjoint paths.   ▪
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Edge-disjoint paths

Max-flow formulation.  Assign unit capacity to every edge. 

 

Theorem.  1–1 correspondence between k edge-disjoint s↝t paths in G 
and integral flows of value k in G ʹ. 

 

Corollary.  Can solve edge-disjoint paths problem via max-flow formulation. 

Pf. 

・Integrality theorem  ⇒  there exists a max flow f * in G ʹ that is integral. 

・1–1 correspondence  ⇒  f * corresponds to max number of edge-disjoint 

s↝t paths in G .  ▪
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Network connectivity

Def.  A set of edges F ⊆ E disconnects t from s if every s↝t path uses 

at least one edge in F.  

 

Network connectivity.  Given a digraph G = (V, E) and two nodes s and t, 
find min number of edges whose removal disconnects t from s.
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Menger’s theorem

Theorem.  [Menger 1927]  The max number of edge-disjoint s↝t paths 

equals the min number of edges whose removal disconnects t from s. 
 

Pf.  ≤  

・Suppose the removal of F ⊆ E disconnects t from s, and ⎟ F⎟ = k. 

・Every s↝t path uses at least one edge in F. 

・Hence, the number of edge-disjoint paths is ≤  k.  ▪
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Menger’s theorem

Theorem.  [Menger 1927]  The max number of edge-disjoint s↝t paths 

equals the min number of edges whose removal disconnects t from s. 
 

Pf.  ≥ 

・Suppose max number of edge-disjoint s↝t paths is k. 

・Then value of max flow =  k. 

・Max-flow min-cut theorem  ⇒  there exists a cut (A, B) of capacity k. 

・Let F be set of edges going from A to B. 

・⎟ F⎟ = k and disconnects t from s.   ▪
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Network flow II:  quiz 3

How to find the max number of edge-disjoint paths in an undirected 
graph? 

A. Solve the edge-disjoint paths problem in a digraph 
(by replacing each undirected edge with two antiparallel edges).

B. Solve a max flow problem in an undirected graph.

C. Both A and B.

D. Neither A nor B.
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Edge-disjoint paths in undirected graphs

Def.  Two paths are edge-disjoint if they have no edge in common. 

 

Edge-disjoint paths problem in undirected graphs.  Given a graph G = (V, E) 
and two nodes s and t, find the max number of edge-disjoint s–t paths.
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Edge-disjoint paths in undirected graphs

Def.  Two paths are edge-disjoint if they have no edge in common. 

 

Edge-disjoint paths problem in undirected graphs.  Given a graph G = (V, E) 
and two nodes s and t, find the max number of edge-disjoint s–t paths.

35
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Edge-disjoint paths in undirected graphs

Def.  Two paths are edge-disjoint if they have no edge in common. 

 

Edge-disjoint paths problem in undirected graphs.  Given a graph G = (V, E) 
and two nodes s and t, find the max number of edge-disjoint s–t paths.
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Edge-disjoint paths in undirected graphs

Max-flow formulation.  Replace each edge with two antiparallel edges and 

assign unit capacity to every edge. 

 

Observation. Two paths P1 and P2 may be edge-disjoint in the digraph but 

not edge-disjoint in the undirected graph.
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Edge-disjoint paths in undirected graphs

Max-flow formulation.  Replace each edge with two antiparallel edges and 

assign unit capacity to every edge. 

 

Lemma.  In any flow network, there exists a maximum flow f in which  

for each pair of antiparallel edges e and eʹ : either f (e) = 0 or f (eʹ) = 0 or both. 

Moreover, integrality theorem still holds. 

Pf.  [ by induction on number of such pairs ] 

・Suppose f (e) > 0 and f (eʹ) > 0 for a pair of antiparallel edges e and eʹ. 

・Set f (e) = f (e) – δ and f (eʹ) = f (eʹ) – δ, where δ  = min { f (e),  f (eʹ) }. 

・f  is still a flow of the same value but has one fewer such pair.   ▪
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Edge-disjoint paths in undirected graphs

Max-flow formulation.  Replace each edge with two antiparallel edges and 

assign unit capacity to every edge. 

 

Lemma.  In any flow network, there exists a maximum flow f in which  

for each pair of antiparallel edges e and eʹ : either f (e) = 0 or f (eʹ) = 0 or both. 

Moreover, integrality theorem still holds. 

 

Theorem.  Max number of edge-disjoint s↝t paths = value of max flow. 

Pf.  Similar to proof in digraphs; use lemma.
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More Menger theorems

Theorem.  Given an undirected graph and two nodes s and t, 
the max number of edge-disjoint s–t paths equals the min number of edges 

whose removal disconnects s and t.  
 

Theorem.  Given an undirected graph and two nonadjacent nodes s and t, 
the max number of internally node-disjoint s–t paths equals the min number 

of internal nodes whose removal disconnects s and t.  
 

Theorem.  Given a directed graph with two nonadjacent nodes s and t, 
the max number of internally node-disjoint s↝t paths equals the min number 

of internal nodes whose removal disconnects t from s.
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Network flow II:  quiz 4

Which extensions to max flow can be easily modeled?  

A. Multiple sources and multiple sinks.

B. Undirected graphs.

C. Lower bounds on edge flows.

D. All of the above.
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Multiple sources and sinks

Def.  Given a digraph G = (V, E) with edge capacities c(e) ≥ 0 and multiple 

source nodes and multiple sink nodes, find max flow that can be sent 

from the source nodes to the sink nodes.
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Multiple sources and sinks:  max-flow formulation

・Add a new source node s and sink node t. 

・For each original source node si add edge (s, si) with capacity ∞. 

・For each original sink node tj, add edge (tj, t) with capacity ∞. 

 

Claim.  1–1 correspondence between flows in G and Gʹ.
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Circulation with supplies and demands

Def.  Given a digraph G = (V, E) with edge capacities c(e) ≥ 0 and 

node demands d(v), a circulation is a function f(e) that satisfies: 

・For each e ∈ E: 0   ≤   f (e)   ≤   c(e) (capacity) 

・For each v ∈ V:           (flow conservation)
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Circulation with supplies and demands:  max-flow formulation

・Add new source s and sink t. 

・For each v with d(v) < 0, add edge (s, v) with capacity −d(v). 

・For each v with d(v) > 0, add edge (v, t) with capacity   d(v). 
 

Claim.  G has circulation iff G ʹ has max flow of value D =
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Circulation with supplies and demands

Integrality theorem.  If all capacities and demands are integers, and there 

exists a circulation, then there exists one that is integer-valued. 

 

Pf.  Follows from max-flow formulation + integrality theorem for max flow. 

 

 

 

Theorem.  Given (V, E, c, d), there does not exist a circulation iff there exists 

a node partition (A, B) such that Σv ∈ B d(v)  >  cap(A, B). 
 

Pf sketch.  Look at min cut in G ʹ.
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Def.  Given a digraph G = (V, E) with edge capacities c(e) ≥ 0, lower bounds 

ℓ(e) ≥ 0, and node demands d(v), a circulation f(e) is a function that satisfies: 

・For each e ∈ E :  ℓ(e)   ≤   f (e)   ≤   c(e)       (capacity) 

・For each v ∈ V :              (flow conservation) 

 

 

Circulation problem with lower bounds.  Given (V, E, ℓ, c, d), does 

there exist a feasible circulation?
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Circulation with supplies, demands, and lower bounds

48



Circulation with supplies, demands, and lower bounds

Max-flow formulation.  Model lower bounds as circulation with demands. 

・Send ℓ(e) units of flow along edge e. 

・Update demands of both endpoints. 

 

 

 

 

 

 

 

Theorem.  There exists a circulation in G iff there exists a circulation in Gʹ. 
Moreover, if all demands, capacities, and lower bounds in G are integers, 

then there exists a circulation in G that is integer-valued. 

 

Pf sketch.  f (e) is a circulation in G iff f ʹ(e) = f (e) – ℓ(e) is a circulation in Gʹ.
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Survey design

・Design survey asking n1 consumers about n2 products. 

・Can survey consumer i about product j only if they own it. 

・Ask consumer i between ci and ciʹ questions. 

・Ask between pj and pjʹ consumers about product j. 
 

Goal.  Design a survey that meets these specs, if possible. 

 

 

Bipartite perfect matching.  Special case when ci  =  ciʹ  =  pj  =  pjʹ  =  1.
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Survey design

Max-flow formulation.  Model as a circulation problem with lower bounds. 

・Add edge (i, j) if consumer j owns product i. 

・Add edge from s to consumer j. 

・Add edge from product i to t. 

・Add edge from t to s. 

・All demands = 0. 

・Integer circulation  ⟺  feasible survey design.
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Airline scheduling

Airline scheduling. 

・Complex computational problem faced by airline carriers. 

・Must produce schedules that are efficient in terms of equipment usage, 

crew allocation, and customer satisfaction. 

・One of largest consumers of high-powered 

algorithmic techniques. 

“Toy problem.” 

・Manage flight crews by reusing them over multiple flights. 

・Input:  set of k flights for a given day. 

・Flight i leaves origin oi at time si and arrives at destination di at time fi. 

・Minimize number of flight crews.
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Airline scheduling

Circulation formulation.  [to see if c crews suffice] 

・For each flight i, include two nodes ui and vi. 

・Add source s with demand −c, and edges (s, ui) with capacity 1. 

・Add sink t with demand c, and edges (vi, t) with capacity 1. 

・For each i, add edge (ui, vi) with lower bound and capacity 1. 

・if flight j reachable from i, add edge (vi, uj) with capacity 1.
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Airline scheduling:  running time

Theorem.  The airline scheduling problem can be solved in O(k3 log k) time. 

Pf. 

・k = number of flights. 

・c = number of crews (unknown). 

・O(k) nodes, O(k2) edges. 

・At most k crews needed.  

       ⇒  solve log2 k circulation problems. 

・Value of any flow is between 0 and k. 
       ⇒  at most k augmentations per circulation problem. 

・Overall time = O(k3 log k). 
 

Remark.  Can solve in O(k3) time by formulating as minimum-flow problem.
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Airline scheduling:  postmortem

Remark.  We solved a toy version of a real problem. 

 

Real-world problem models countless other factors: 

・Union regulations:  e.g., flight crews can fly only a certain number of 

hours in a given time window. 

・Need optimal schedule over planning horizon, not just one day. 

・Deadheading has a cost. 

・Flights don’t always leave or arrive on schedule. 

・Simultaneously optimize both flight schedule and fare structure. 

 

Message. 

・Our solution is a generally useful technique for efficient reuse of limited 

resources but trivializes real airline scheduling problem. 

・Flow techniques useful for solving airline scheduling problems 

(and are widely used in practice). 

・Running an airline efficiently is a very difficult problem.
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Image segmentation

Image segmentation. 

・Divide image into coherent regions. 

・Central problem in image processing. 

 

Ex.  Separate human and robot from background scene.
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Image segmentation

Foreground / background segmentation. 

・Label each pixel in picture as belonging to 

foreground or background. 

・V = set of pixels, E = pairs of neighboring pixels. 

・ai  ≥  0 is likelihood pixel i in foreground. 

・bi  ≥  0 is likelihood pixel i in background. 

・pij ≥  0 is separation penalty for labeling one of i 
and j as foreground, and the other as background. 

 

Goals. 

・Accuracy:  if ai  > bi in isolation, prefer to label i in foreground. 

・Smoothness: if many neighbors of i are labeled foreground, 

we should be inclined to label i as foreground. 

・Find partition (A, B) that maximizes:  
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Formulate as min-cut problem. 

・Maximization. 

・No source or sink. 

・Undirected graph. 

 

Turn into minimization problem. 

・Maximizing 

 

・is equivalent to minimizing 

 

 

 

・or alternatively

Image segmentation
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Image segmentation

Formulate as min-cut problem G ʹ = (V ʹ, E ʹ). 

・Include node for each pixel. 

・Use two antiparallel edges instead of 

undirected edge.  

・Add source s to correspond to foreground. 

・Add sink t to correspond to background.
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Image segmentation

Consider min cut (A, B) in G ʹ. 

・ A = foreground. 

 

 

・Precisely the quantity we want to minimize.

63

s ti j

G′

A

if i and j on different sides, 
pij counted exactly once

cap(A, B) =
�

j�B

aj +
�

i�A

bi +
�

(i,j)�E

i�A, j�B

pij

<latexit sha1_base64="GcrfvkZNab/Z8lQbNEchAcXUvOM="></latexit><latexit sha1_base64="GcrfvkZNab/Z8lQbNEchAcXUvOM="></latexit><latexit sha1_base64="GcrfvkZNab/Z8lQbNEchAcXUvOM=">AAACvHicbVHtatswFJW9ry77aNr9HIzLwlhKQ7DLxgplo+0Y7GcHS1uIjZHlm1aJJBtJLg3GL7G325vs5xTbgybdBUmHc+6X7k0LwY0Ngt+e/+Dho8dPtp72nj1/8XK7v7N7bvJSM5ywXOT6MqUGBVc4sdwKvCw0UpkKvEgXX1f6xQ1qw3P10y4LjCW9UnzGGbWOSvq/GC2GJyM43YPoKDqCz+0TmVIm1RwiruC0BprMG34f7sq8kU9qSBPe8vu9VnF3aixli2rIRzDfaxy/QRRNxwcfUcbQhY5cGPyrUkPhcs7rpD8IxkFjcB+EHRiQzs6SHW83ynJWSlSWCWrMNAwKG1dUW84E1r2oNFi4bugVTh1UVKKJq2Z4NbxzTAazXLujLDTs3YiKSmOWMnWektprs6mtyP9p09LODuOKq6K0qFhbaFYKsDmsNgEZ18isWDpAmeauV2DXVFNm3b7WqjS5C2RrP6luS8VZnuEGK+yt1XQ1xXBzZvfB+cE4DMbhjw+D48NunlvkNXlLhiQkn8gx+U7OyIQw8sd74733hv4XP/MXvmxdfa+LeUXWzL/5CybL0fU=</latexit><latexit sha1_base64="GcrfvkZNab/Z8lQbNEchAcXUvOM="></latexit>

pij

aj

bi



Grabcut.  [ Rother–Kolmogorov–Blake 2004 ]

Grabcut image segmentation
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“GrabCut” — Interactive Foreground Extraction using Iterated Graph Cuts

Carsten Rother∗ Vladimir Kolmogorov†
Microsoft Research Cambridge, UK

Andrew Blake‡

Figure 1: Three examples of GrabCut . The user drags a rectangle loosely around an object. The object is then extracted automatically.

Abstract

The problem of efficient, interactive foreground/background seg-
mentation in still images is of great practical importance in im-
age editing. Classical image segmentation tools use either texture
(colour) information, e.g. Magic Wand, or edge (contrast) infor-
mation, e.g. Intelligent Scissors. Recently, an approach based on
optimization by graph-cut has been developed which successfully
combines both types of information. In this paper we extend the
graph-cut approach in three respects. First, we have developed a
more powerful, iterative version of the optimisation. Secondly, the
power of the iterative algorithm is used to simplify substantially the
user interaction needed for a given quality of result. Thirdly, a ro-
bust algorithm for “border matting” has been developed to estimate
simultaneously the alpha-matte around an object boundary and the
colours of foreground pixels. We show that for moderately difficult
examples the proposed method outperforms competitive tools.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms; I.3.6 [Computer Graphics]:
Methodology and Techniques—Interaction techniques; I.4.6 [Im-
age Processing and Computer Vision]: Segmentation—Pixel clas-
sification; partitioning

Keywords: Interactive Image Segmentation, Graph Cuts, Image
Editing, Foreground extraction, Alpha Matting

1 Introduction

This paper addresses the problem of efficient, interactive extrac-
tion of a foreground object in a complex environment whose back-
ground cannot be trivially subtracted. The resulting foreground ob-
ject is an alpha-matte which reflects the proportion of foreground
and background. The aim is to achieve high performance at the
cost of only modest interactive effort on the part of the user. High
performance in this task includes: accurate segmentation of object
from background; subjectively convincing alpha values, in response
to blur, mixed pixels and transparency; clean foreground colour,

∗e-mail: carrot@microsoft.com
†e-mail: vnk@microsoft.com
‡e-mail: ablake@microsoft.com

free of colour bleeding from the source background. In general,
degrees of interactive effort range from editing individual pixels, at
the labour-intensive extreme, to merely touching foreground and/or
background in a few locations.

1.1 Previous approaches to interactive matting

In the following we describe briefly and compare several state of
the art interactive tools for segmentation: Magic Wand, Intelligent
Scissors, Graph Cut and Level Sets and for matting: Bayes Matting
and Knockout. Fig. 2 shows their results on a matting task, together
with degree of user interaction required to achieve those results.

Magic Wand starts with a user-specified point or region to com-
pute a region of connected pixels such that all the selected pixels
fall within some adjustable tolerance of the colour statistics of the
specified region. While the user interface is straightforward, finding
the correct tolerance level is often cumbersome and sometimes im-
possible. Fig. 2a shows the result using Magic Wand from Adobe
Photoshop 7 [Adobe Systems Incorp. 2002]. Because the distri-
bution in colour space of foreground and background pixels have a
considerable overlap, a satisfactory segmentation is not achieved.

Intelligent Scissors (a.k.a. Live Wire or Magnetic Lasso)
[Mortensen and Barrett 1995] allows a user to choose a “minimum
cost contour” by roughly tracing the object’s boundary with the
mouse. As the mouse moves, the minimum cost path from the cur-
sor position back to the last “seed” point is shown. If the computed
path deviates from the desired one, additional user-specified “seed”
points are necessary. In fig. 2b the Magnetic Lasso of Photoshop 7
was used. The main limitation of this tool is apparent: for highly
texture (or un-textured) regions many alternative “minimal” paths
exist. Therefore many user interactions (here 19) were necessary to
obtain a satisfactory result. Snakes or Active Contours are a related
approach for automatic refinement of a lasso [Kass et al. 1987].

Bayes matting models colour distributions probabilistically to
achieve full alpha mattes [Chuang et al. 2001] which is based on
[Ruzon and Tomasi 2000]. The user specifies a “trimap” T =
{TB,TU ,TF} in which background and foreground regions TB and
TF are marked, and alpha values are computed over the remain-
ing region TU . High quality mattes can often be obtained (fig.
2c), but only when the TU region is not too large and the back-
ground/foreground colour distributions are sufficiently well sepa-
rated. A considerable degree of user interaction is required to con-
struct an internal and an external path.

Knockout 2 [Corel Corporation 2002] is a proprietary plug-in for
Photoshop which is driven from a user-defined trimap, like Bayes
matting, and its results are sometimes similar (fig. 2d), sometimes
of less quality according to [Chuang et al. 2001].
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Project selection (maximum weight closure problem)

Projects with prerequisites. 

・Set of possible projects P : project v has associated revenue pv. 

・Set of prerequisites E : (v, w) ∈ E means w is a prerequisite for v. 

・A subset of projects A ⊆ P is feasible if the prerequisite of every project 

in A also belongs to A. 

 

 

Project selection problem.  Given a set of projects P and prerequisites E, 

choose a feasible subset of projects to maximize revenue.
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MAXIMAL CLOSURE OF A GRAPH AND 
APPLICATIONS TO COMBINATORIAL 

PROBLEMS*t 

JEAN-CLAUDE PICARD 

Ecole Polytechnique, Montreal 

This paper generalizes the selection problem discussed by J. M. Rhys [12], J. D. Murchland 
[9], M. L. Balinski [1] and P. Hansen [4]. Given a directed graph G, a closure of G is defined 
as a subset of nodes such that if a node belongs to the closure all its successors also belong to 
the set. If a real number is associated to each node of G a maximal closure is defined as a 
closure of maximal value. 

1. Introduction 

The selection problem discussed by J. M. Rhys [12] and M. L. Balinksi [1] can be 
defined as follows: A finite set of points S ("stations") together with the "cost" c, > 0 
of choosing ("constructing") any point s of S is given. At the same time, a finite 
collection I of subsets a of points from S is specified together with the "profit" pa of 
choosing any one of the subsets a. Define a selection to be a collection of subsets 
from E together with all points of S which belong to this collection. Let the value of 
the selection be the sum of the profits of the subsets from E minus the sum of the 
costs of the points of S in the selection. The problem is to find a selection of 
maximum value. J. M. Rhys [12] and M. L. Balinski [1] have shown that this problem 
can be solved as a maximal flow problem in a bipartite graph. 

This selection problem can easily be generalized as follows: Given a directed graph 
G = (V, A) where V is the set of nodes and A the set of arcs, a closure of G is defined 
as a subset of vertices Y such that if a vertex belongs to Y then all its successors 
belong also to Y. If to each vertex vi is associated a real number, mi, then a maximal 
closure Y* of G is defined as a closure of maximal value (i.e. Ev E y.mi is maximal). 

In this paper, it is shown that the problem of finding a maximal closure of a graph 
is equivalent to solving the maximal flow problem in a network formed by the graph 
G with infinite capacities on its arcs, a source linked to each node vi of positive value 
by an arc of capacity (+ mi) and a sink linked from each node vi of negative value by 
an arc of capacity (- mi). 

The selection problem is then the maximal closure problem in a bipartite graph 
G = (E, S, A) with arcs A = {(u, s) a E E, s E S, and s E a), and where the value 
associated with each node a EE is pa and the value associated with each node s E S is 
- Cs. 

Applications 
J. M. Rhys [12] and J. D. Murchland [9] give several applications of the selection 

problem. The maximal closure of a graph finds its main application in mining 
engineering for determining optimum pit mine contours [5]-[8]. Given an ore body 
decomposed into blocks, there is a net value (the profit of the block minus the 
operating, capital and fixed costs) associated with each block. Determining optimum 

* Processed by Professor Morton Klein, Departmental Editor for Network Flows and Location Analysis 
and Associate Editor Michael Held; received June 11, 1975, revised August 28, 1975. This paper has been 
with the author 2 months for revision. 

t This research was supported by a grant from the Iron Ore Company of Canada. 
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Project selection:  prerequisite graph

Prerequisite graph.  Add edge (v, w) if w is a prerequisite for v.
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{ v, w, x } is feasible

w

v x

{ v, x } is infeasible

v

w

x



Project selection:  min-cut formulation

Min-cut formulation. 

・Assign a capacity of ∞ to each prerequisite edge. 

・Add edge (s, v) with capacity  pv if pv > 0. 

・Add edge (v, t) with capacity −pv if pv < 0. 

・For notational convenience, define ps  =  pt  =  0.

−pw
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Claim.  (A, B) is min cut iff A − { s } is an optimal set of projects. 

・Infinite capacity edges ensure A − { s } is feasible. 

・Max revenue because:

Project selection:  min-cut formulation
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Open-pit mining

Open-pit mining.  [studied since early 1960s] 

・Blocks of earth are extracted from surface to retrieve ore. 

・Each block v has net value pv  = value of ore  –  processing cost. 

・Can’t remove block v until both blocks w and x are removed.
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Baseball elimination
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Baseball elimination problem

Q.  Which teams have a chance of finishing the season with the most wins? 

 

 

 

 

 

 

 

 

 

Montreal is mathematically eliminated. 

・Montreal finishes with ≤ 80 wins. 

・Atlanta already has 83 wins. 

 

Remark.  This is the only reason sports writers appear to be aware of —

conditions are sufficient but not necessary!
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i team wins losses to play ATL PHI NYM MON

0 Atlanta 83 71 8 – 1 6 1

1 Philly 80 79 3 1 – 0 2

2 New York 78 78 6 6 0 – 0

3 Montreal 77 82 3 1 2 0 –



Baseball elimination problem

Q.  Which teams have a chance of finishing the season with the most wins? 

 

 

 

 

 

 

 

 

 

Philadelphia is mathematically eliminated. 

・Philadelphia finishes with ≤ 83 wins. 

・Either New York or Atlanta will finish with ≥ 84 wins. 

 

Observation. Answer depends not only on how many games already won 

and left to play, but on whom they’re against.
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i team wins losses to play ATL PHI NYM MON

0 Atlanta 83 71 8 – 1 6 1

1 Philly 80 79 3 1 – 0 2

2 New York 78 78 6 6 0 – 0

3 Montreal 77 82 3 1 2 0 –



Baseball elimination problem

Current standings. 

・Set of teams S. 

・Distinguished team z ∈ S. 

・Team x has won wx games already. 

・Teams x and y play each other rxy additional times. 

 

Baseball elimination problem.  Given the current standings, is there any 

outcome of the remaining games in which team z finishes with the most 

(or tied for the most) wins?
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SIAM REVIEW
Vol. 8, No. 3, July, 1966

POSSIBLE WINNERS IN PARTIALLY COMPLETED TOURNAMENTS*

BENJAMIN L. SCHWARTZ

1. Introduction. In this paper, we shall investigate certain questions in tourna-
ment scheduling. For definiteness, we shall use the terminology of baseball. We
shall be concerned with the categorization of teams into three classes during
the closing days of the season. A team may be definitely eliminated from pen-
nant possibility; it may be in contention, or it may have clinched the champion-
ship. It will be our convention that a team that can possibly tie for the pennant
is considered still in contention. In this paper necessary and sufficient conditions
are developed to classify any team properly into the appropriate category.

2. First example. We consider first an extremely simple example, but one
that will prove instructive. Suppose one team, say the New York Mets, finds
itself at one point in the season 37 games behind another, perhaps the Dodgers,
with 36 to play for each team. Then we can surely declare that the Mets are
eliminated.
At the risk of belaboring the obvious, we propose to examine in detail why

this is so. A natural unit for accounting for team changes in position is half-
games behind (henceforth HGB).
The Mets are trailing the Dodgers by 74 HGB (= 37 games). What hope do

they have to overcome this deficit? Each game they have still to play offers
them potentially the prospect of one HGB gain, since they may wb it. There
are 36 such games. Likewise, each game the Dodgers still have to play gives the
Mets the prospect of one HGB gain, since the Dodgers may lose. There are
also 36 of these. The total maximum potential gain is only 36 + 36 72 HGB,
not enough to overcome the existing debit balance. Hence the Mets are indeed
eliminated by the Dodgers.
The generalized rule that has been illustrated here can easily be formalized.

Let team x be N HGB behind team y. Let the number of games still to play for
x and y be P(x) and P(y), respectively. Then, if

(1) N- P(x) P(y) > O,
we can assert that x is eliminated by y.

In fact, this criterion merely gives a condition for the possible interchange of
x and y in the standings before season’s end. A team has the pennant clinched
when it is leading the league, and no other team can interchange with it.

3. Example of general situation. Let us now look at a more interesting situa-
tion. Table 1 gives standings in a fictitious league, part way through the season.

* Received by the editors June 1, 1965, and in final revised form December 1, 1965.
United States Navy Postgraduate School, Monterey, California. Now at Weapons

Systems Evaluation Division, Institute for Defense Analyses, Arlington, Virginia.
This table is adaped from the actual standings in the National League in mid-Sep-

tember 1963.
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Baseball elimination problem:  max-flow formulation

Can team 4 finish with most wins? 

・Assume team 4 wins all remaining games  ⇒  w4 + r4 wins.  

・Divvy remaining games so that all teams have ≤ w4 + r4 wins.
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team nodes
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games left 
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this many more games



Baseball elimination problem:  max-flow formulation

Theorem.  Team 4 not eliminated iff max flow saturates all edges leaving s. 
Pf. 

・Integrality theorem  ⇒ each remaining game between x and y added to 

number of wins for team x or team y. 

・Capacity on (x, t) edges ensure no team wins too many games.  ▪
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Baseball elimination:  explanation for sports writers

Q.  Which teams have a chance of finishing the season with the most wins? 

 

 

 

 

 

 

 

 

 

 

Detroit is mathematically eliminated. 

・Detroit finishes with ≤ 76 wins. 

・Wins for R  = { NYY, BAL, BOS, TOR } = 278. 

・Remaining games among { NYY, BAL, BOS, TOR } = 3 + 8 + 7 + 2 + 7 = 27. 

・Average team in R wins 305/4 = 76.25 games.
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i team wins losses to play NYY BAL BOS TOR DET

0 New York 75 59 28 – 3 8 7 3

1 Baltimore 71 63 28 3 – 2 7 4

2 Boston 69 66 27 8 2 – 0 0

3 Toronto 63 72 27 7 7 0 – 0

4 Detroit 49 86 27 3 4 0 0 –

AL East (August 30, 1996)



Baseball elimination:  explanation for sports writers

Certificate of elimination. 

 

 

 

 

 

Theorem.  [Hoffman–Rivlin 1967]  Team z is eliminated iff there exists a 

subset T* such that 

 

Pf.  ⇐ 

・Suppose there exists T* ⊆  S such that                                     . 

・Then, the teams in T* win at least (w(T*) + g(T*)) / | T* | games on average. 

・This exceeds the maximum number that team z can win.  ▪

79

  

€ 

T ⊆ S, w(T ) := wi
i∈T
∑
# wins! " # 

, g(T ) := gx y
{x,y} ⊆  T

∑

# remaining games! " $ $ # $ $ 
,

€ 

wz + gz <
w(T*)+ g(T*)

|T* |

€ 

wz + gz <
w(T*)+ g(T*)

|T* |



Baseball elimination:  explanation for sports writers

Pf.  ⇒  

・Use max-flow formulation, and consider min cut (A, B). 

・Let T* = team nodes on source side A of min cut. 

・Observe that game node x–y ∈ A iff both x ∈ T* and y ∈ T*. 
- infinite capacity edges ensure if x–y ∈ A, then both x ∈ A and y ∈ A 
- if x ∈ A and y ∈ A but x–y ∉ A, then adding x–y to A decreases the 

capacity of the cut by gxy

s

y

x t
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Baseball elimination:  explanation for sports writers

Pf.  ⇒  

・Use max-flow formulation, and consider min cut (A, B). 

・Let T* = team nodes on source side A of min cut. 

・Observe that game node x–y ∈ A iff both x ∈ T* and y ∈ T*. 

・Since team z is eliminated, by max-flow min-cut theorem, 

 

 

 

 

 

・Rearranging terms:                                          ▪
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