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Minimum cut application (RAND 1950s)

“Free world” goal. Cut supplies (if Cold War turns into real war).

rail network connecting Soviet Union with Eastern European countries
(map declassified by Pentagon in 1999)



Maximum flow application (Tolstol 1930s)

Soviet Union goal. Maximize flow of supplies to Eastern Europe.
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rail network connecting Soviet Union with Eastern European countries

(map declassified by Pentagon in 1999)




Max-flow and min-cut applications

Max-flow and min-cut problems are widely applicable model.

Data mining.

Open-pit mining.

Bipartite matching.

Network reliability.

Baseball elimination.

Image segmentation.
Network connectivity.
Markov random fields.
Distributed computing.
Security of statistical data.
Egalitarian stable matching.
Network intrusion detection.
Multi-camera scene reconstruction.

Sensor placement for homeland security.

Many, many, more.

liver and hepatic vascularization segmentation
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Matching

Def. Given an undirected graph G =(V, E), subset of edges MCE
is a matching if each node appears in at most one edge in M.

Max matching. Given a graph G, find a max-cardinality matching.




Bipartite matching

Def. A graph G is bipartite if the nodes can be partitioned into two subsets
L and R such that every edge connects a node in L with a node in R.

Bipartite matching. Given a bipartite graph G=(L U R, E), find a max-
cardinality matching.

®
. ®

matching: 1-1', 2-2', 3-4', 4-5'



Bipartite matching: max-flow formulation

Formulation.
* Create digraph G'=(LURU {s,t}, E").
* Direct all edges from L to R, and assign infinite (or unit) capacity.
* Add unit-capacity edges from s to each node in L.
* Add unit-capacity edges from each node in R to .
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Max-flow formulation: proof of correctness

Theorem. 1-1 correspondence between matchings of cardinality k in G
and integral flows of value kin G'.
Pf. = ™ for each edge e: fle) € { 0,1}
* Let M be a matching in G of cardinality «.
* Consider flow f that sends 1 unit on each of the k£ corresponding paths.
* fis a flow of value k. =

e ——s D— = —>(,

f
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Max-flow formulation: proof of correctness

Theorem. 1-1 correspondence between matchings of cardinality k in G
and integral flows of value kin G'.
Pf. < ™ for each edge e: fle) €{ 0,1}
* Let fbe an integral flow in G' of value k.
* Consider M = set of edges from L to R with f(e) = 1.
- each node in L and R participates in at most one edge in M
- |M| =k : apply flow-value lemma to cut (LU {s},RU {¢}) =

/o)—w—»@\] (D)
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Max-flow formulation: proof of correctness

Theorem. 1-1 correspondence between matchings of cardinality k in G
and integral flows of value kin G'.

Corollary. Can solve bipartite matching problem via max-flow formulation.
Pf.
* Integrality theorem = there exists a max flow f*in G' that is integral.
* 1-1 correspondence = f* corresponds to max-cardinality matching. =

/o)—w—»@\] (D)
/‘ D O
G © 3) o 3)

o Sa oy
g © ~~ © \@ G



Network flow Il: quiz 1

What is running time of Ford-Fulkerson algorithms to find a max-
cardinality matching in a bipartite graph with |L| = |R|=n?

A. O(m + n)
B. O(mn)
C. O(mn?
D. O(m*n)

12



Perfect matchings in bipartite graphs

Def. Given a graph G=(V,E), a subset of edges M CE is a perfect matching
if each node appears in exactly one edge in M.

Q. When does a bipartite graph have a perfect matching?

Structure of bipartite graphs with perfect matchings.
* Clearly, we must have |L|= |R]|.
« Which other conditions are necessary?
« Which other conditions are sufficient?

13



Perfect matchings in bipartite graphs

Notation. Let S be a subset of nodes, and let N(S) be the set of nodes

adjacent to nodes in S.

Observation. If a bipartite graph G=(L U R, E) has a perfect matching,
then |N(S)| = | S| for all subsets SC L.
Pf. Each node in S has to be matched to a different node in N(S). =

S={2,4,5}
N(GS) =1{2,5"}

no perfect matching

14



Hall’s marriage theorem

Theorem. [Frobenius 1917, Hall 1935] Let G=(LUR,E) be a bipartite graph
with |L| = |R|. Then, graph G has a perfect matching iff | N(S)| = | S| for all
subsets SC L.

Pf. = This was the previous observation.

$S=1{2,4,5}
NGS) =1{2,5"}

no perfect matching

15



Hall’s marriage theorem

Pf. —= Suppose G does not have a perfect matching.

GI

Formulate as a max-flow problem and let (A, B) be a min cut in G'.
By max-flow min-cut theorem, cap(A, B) < |L|.

Define L,=LNA, Ly=LNB, R,=RN A.

cap(A,B) = |Lg| + |Ry| = [R4| < |L4l.

Min cut can’t use « edges = N(L,) C R,.

|N(LA)| . |RA| < |LA|-

Choose S=L,. =

@
I o OO
A @ La = {2, 4, 5}
y e Ls = {1, 3}
O l Ra = {2',5%

N(La) = {2, 57}

16



Bipartite matching

Problem. Given a bipartite graph, find a max-cardinality matching.

1955 O(m n) augmenting path Ford-Fulkerson
1973 O(m n'?) blocking flow Hopcroft-Karp, Karzanov
2004 O(n?37%) fast matrix multiplication Mucha-Sankowsi
2013 Om'7) electrical flow Madry

20xx 299

© © ®

running time for finding a max-cardinality matching in a bipartite graph with n nodes and m edges

17



Network flow Il: quiz 2 >

Which of the following are properties of the graph G = (V, E)?

o N w »

G has a perfect matching.

Hall’s condition is satisfied: |N(S)| = |S| for all subsets SC V.

Both A and B.

Neither A nor B.

18



Nonbipartite matching

Problem. Given an undirected graph, find a max-cardinality matching.

Structure of nonbipartite grap

But well understood.

Blossom algorithm: O®®?).
Best known: O@m nl’?).

PATHS, TREES, AND FLOWERS
JACK EDMONDS

1. Introduction. A graph G for purposes here is a finite set of elements
called vertices and a finite set of elements called edges such that each edge
meets exactly two vertices, called the end-points of the edge. An edge is said
to join its end-points.

A matching in G is a subset of its edges such that no two meet the same
vertex. We describe an efficient algorithm for finding in a given graph a match-
ing of maximum cardinality. This problem was posed and partly solved by
C. Berge; see Sections 3.7 and 3.8.

ns is more complicated.
Tutte—-Berge formula, Edmonds—-Gallai]
Edmonds 1965]

‘Micali-Vazirani 1980, Vazirani 1994]

COMBINATORICA COMBINATORICA 14 (1) (1994) 71-109

Akadémiai Kiadé — Springer-Verlag

A THEORY OF ALTERNATING PATHS AND BLOSSOMS FOR
PROVING CORRECTNESS OF THE O(vVE) GENERAL GRAPH
MAXIMUM MATCHING ALGORITHM

VIJAY V. VAZIRANI!

Received December 30, 1989
Revised June 15, 1993
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Historical significance (Jack Edmonds 1965)

2. Digression. An explanation is due on the use of the words “ethcient
algorithm.”” First, what I present 1s a conceptual description of an algorithm
and not a particular formalized algorithm or *“‘code.”

For practical purposes computational details are wvital. However. my
purpose 1s only to show as attractively as I can that there is an etficient
algorithm. According to the dictionary, “effictent’” means ‘“‘adequate in opera-
tion or performance.” This i1s roughly the meaning [ want—in the sense that
it is conceivable for maximum matching to have no efficient algorithm. Perhaps
a better word 1s ‘‘good.”

I am claiming, as a mathematical result, the existence of a good algorithm
for finding a maximum cardinality matching in a graph.

There 1s an obvious finite algorithm, but that algorithm increases in ditticulty
exponentially with the size of the graph. It is by no means obvious whether
or not there exists an algorithm whose difficulty increases only’ algebraically
with the size of the graph.

20



HACKATHON PROBLEM

Hackathon problem.
« Hackathon attended by n Harvard students and = Princeton students.
« Each Harvard student is friends with exactly k£ >0 Princeton students;
each Princeton student is friends with exactly k£ Harvard students.
 Is it possible to arrange the hackathon so that each Princeton student
pair programs with a different friend from Harvard?

2-regular bipartite graph

Mathematical reformulation. Does every k-regular (1 —— )

bipartite graph have a perfect matching? ©

Ex. Boolean hypercube. ©
1 ]

|l
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Edge-disjoint paths

Def. Two paths are edge-disjoint if they have no edge in common.

Edge-disjoint paths problem. Given a digraph G=(V, E) and two nodes
s and ¢, find the max number of edge-disjoint s~¢ paths.

Ex. Communication networks.

® © (& O,

digraph G

25



Edge-disjoint paths

Def. Two paths are edge-disjoint if they have no edge in common.

Edge-disjoint paths problem. Given a digraph G=(V, E) and two nodes
s and ¢, find the max number of edge-disjoint s~¢ paths.

Ex. Communication networks.

digraph G
2 edge-disjoint paths

26



Edge-disjoint paths

Max-flow formulation. Assign unit capacity to every edge.

Theorem. 1-1 correspondence between k edge-disjoint s~ paths in G
and integral flows of value k in G'.

Pf. =
* Let P, ..., P, be k edge-disjoint s~t paths in G.

1 edge e participates in some path P;

0 otherwise

- Set f(e) = {

* Since paths are edge-disjoint, fis a flow of value k. =

O O



Edge-disjoint paths

Max-flow formulation. Assign unit capacity to every edge.

Theorem. 1-1 correspondence between k edge-disjoint s~ paths in G
and integral flows of value k in G'.
Pf. <
* Let fbe an integral flow in G’ of value «.
* Consider edge (s, u) with f(s,u) = 1.
- by flow conservation, there exists an edge (u,v) with f(u,v) =1
- continue until reach ¢, always choosing a new edge
* Produces k (not necessarily simple) edge-disjoint paths. =

\ can eliminate cycles

O O to get simple paths

] in O(mn) time if desired
(flow decomposition)

@ ‘ O O I —®



Edge-disjoint paths

Max-flow formulation. Assign unit capacity to every edge.

Theorem. 1-1 correspondence between k edge-disjoint s~ paths in G
and integral flows of value k in G'.

Corollary. Can solve edge-disjoint paths problem via max-flow formulation.

Pf.
* Integrality theorem = there exists a max flow f*in G' that is integral.

* 1-1 correspondence = f* corresponds to max number of edge-disjoint
s~t paths in G. =



Network connectivity

Def. A set of edges FC E disconnects ¢ from s if every s+t path uses
at least one edge in F.

Network connectivity. Given a digraph G =(V, E) and two nodes s and ¢,
find min number of edges whose removal disconnects ¢ from s.

30



Menger’s theorem

Theorem. [Menger 1927] The max number of edge-disjoint s~ paths
equals the min number of edges whose removal disconnects ¢ from s.

Pf. <
* Suppose the removal of F C E disconnects 7 from s, and |F|=«k.
* Every s~r path uses at least one edge in F.
* Hence, the number of edge-disjoint paths is < k. =

31



Menger’s theorem

Theorem. [Menger 1927] The max number of edge-disjoint s~ paths
equals the min number of edges whose removal disconnects ¢ from s.

Pf. >

Suppose max number of edge-disjoint s~ paths is .
* Then value of max flow = «.

* Max-flow min-cut theorem = there exists a cut (A, B) of capacity «.
* Let F be set of edges going from A to B.
* |F|=k and disconnects r from s. =



Network flow Il: quiz 3 s

How to find the max number of edge-disjoint paths in an undirected
graph?

A. Solve the edge-disjoint paths problem in a digraph
(by replacing each undirected edge with two antiparallel edges).

B. Solve a max flow problem in an undirected graph.
C. Both A and B.

D. Neither A nor B.

33



Edge-disjoint paths in undirected graphs

Def. Two paths are edge-disjoint if they have no edge in common.

Edge-disjoint paths problem in undirected graphs. Given a graph G=(V,E)
and two nodes s and ¢, find the max number of edge-disjoint s—¢ paths.

O, 3 (&) ®

digraph G

34



Edge-disjoint paths in undirected graphs

Def. Two paths are edge-disjoint if they have no edge in common.

Edge-disjoint paths problem in undirected graphs. Given a graph G=(V,E)
and two nodes s and ¢, find the max number of edge-disjoint s—¢ paths.

O, (3) (&) (D

digraph G

(2 edge-disjoint paths) @ @

35



Edge-disjoint paths in undirected graphs

Def. Two paths are edge-disjoint if they have no edge in common.

Edge-disjoint paths problem in undirected graphs. Given a graph G=(V,E)
and two nodes s and ¢, find the max number of edge-disjoint s—¢ paths.

O © (&) (D

digraph G

(3 edge-disjoint paths) @ @

36



Edge-disjoint paths in undirected graphs

Max-flow formulation. Replace each edge with two antiparallel edges and
assign unit capacity to every edge.

Observation. Two paths P; and P, may be edge-disjoint in the digraph but
not edge-disjoint in the undirected graph.

N

if P1 uses edge (u,v)
and P> uses its antiparallel edge (v, u)

37



Edge-disjoint paths in undirected graphs

Max-flow formulation. Replace each edge with two antiparallel edges and
assign unit capacity to every edge.

Lemma. In any flow network, there exists a maximum flow fin which
for each pair of antiparallel edges e and ¢’ : either f(e) =0 or f(¢') =0 or both.
Moreover, integrality theorem still holds.
Pf. [ by induction on number of such pairs ]
* Suppose f(e) >0 and f(¢') >0 for a pair of antiparallel edges ¢ and ¢'.
* Set f(e)=f(e)—0 and f(e') =f(e") — 0, where & =min { f(e), f(e') }.
* fis still a flow of the same value but has one fewer such pair. =

O O
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Edge-disjoint paths in undirected graphs

Max-flow formulation. Replace each edge with two antiparallel edges and
assign unit capacity to every edge.

Lemma. In any flow network, there exists a maximum flow fin which
for each pair of antiparallel edges e and ¢’ : either f(e) =0 or f(¢') =0 or both.
Moreover, integrality theorem still holds.

Theorem. Max number of edge-disjoint s~¢ paths = value of max flow.
Pf. Similar to proof in digraphs; use lemma.

O O



More Menger theorems

Theorem. Given an undirected graph and two nodes s and ¢,
the max number of edge-disjoint s— paths equals the min number of edges
whose removal disconnects s and .

Theorem. Given an undirected graph and two nonadjacent nodes s and ¢,
the max number of internally node-disjoint s—t paths equals the min number
of internal nodes whose removal disconnects s and +.

Theorem. Given a directed graph with two nonadjacent nodes s and ¢,
the max number of internally node-disjoint s~¢ paths equals the min number
of internal nodes whose removal disconnects ¢ from s.

Zur allgemeinen Kurventheorie.
Von |
Karl Menger (Amsterdam).

Einleitung.

I, Uber die Bedeutung der Ordnungszahl von Kurvenpunkten.
II. Uber umfassendste Kurven, |

[11. Uber die Punkte nnendlicher Ordnung.

40
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Network flow Il: quiz 4

Which extensions to max flow can be easily modeled?

A. Multiple sources and multiple sinks.
B. Undirected graphs.
C. Lower bounds on edge flows.

D. All of the above.

42



Multiple sources and sinks

Def. Given a digraph G =(V, E) with edge capacities c(e) =0 and multiple
source nodes and multiple sink nodes, find max flow that can be sent
from the source nodes to the sink nodes.

flow network G @ : Q 6 @

10

43



Multiple sources and sinks: max-flow formulation

 Add a new source node s and sink node +.

* For each original source node s; add edge (s, s;) with capacity .

* For each original sink node 7, add edge (7, r) with capacity c.

Claim. 1-1 correspondence between flows in G and G'.

flow network G’ @ : Q 6 @

44



Circulation with supplies and demands

Def. Given a digraph G =(V, E) with edge capacities c(e) =0 and

node demands d(v), a circulation is a function f(e) that satisfies:

* For each e € E:
* ForeachveV:

flow network G

4/10

—7 Q 3/3

e in to v

0 < f(e) = c(e)
Y fle) = D> fle) = d(v)

e out of v

-8

O

6/6

O

10

6/7

(demand node)

(capacity)
(flow conservation)

(supply node)

—6
Q flow capacity
17 V
2 /4 7he
O 4/4 (O 1
0

(transshipment node)

45



Circulation with supplies and demands: max-flow formulation

* Add new source s and sink .
* For each v with d(v) <0, add edge (s, v) with capacity —d(v).

* For each v with d(v) >0, add edge (v,7) with capacity d().

Claim. G has circulation iff G’ has max flow of value D = ) d(v) = ) —d(v)

v: d(v)>0 \ v: d(v)<0
saturates all edges
A leaving s
suppl '
/ — Pply and entering ¢

flow network G’ Q‘/ \—06

_7 3 Q 4 11
10 0
- / ) N
\0 demand

46



Circulation with supplies and demands

Integrality theorem. If all capacities and demands are integers, and there
exists a circulation, then there exists one that is integer-valued.

Pf. Follows from max-flow formulation + integrality theorem for max flow.

Theorem. Given (V,E,c,d), there does not exist a circulation iff there exists
a node partition (A, B) such that = - ;d(v) > cap(A, B).

\

Pf sketch. Look at min cut in G'. demand by nodes in B exceeds

supply of nodes in B plus
max capacity of edges going from A to B

47



Circulation with supplies, demands, and lower bounds

Def. Given a digraph G=(V, E) with edge capacities c(e) =0, lower bounds
£(e) =0, and node demands d(v), a circulation f(e) is a function that satisfies:
* Foreache€EE: [E(e) < f(e)js c(e) (capacity)
» Foreachvev: > fle — > fle) = d() (flow conservation)

e in to v e out of v

Circulation problem with lower bounds. Given (V,E, ¢, c,d), does
there exist a feasible circulation?

48



Circulation with supplies, demands, and lower bounds

Max-flow formulation. Model lower bounds as circulation with demands.
* Send £(e) units of flow along edge e.

- Update demands of both endpoints.

lower bound upper bound capacity

O—r.a9—) O—71—®

d(v) d(w) d(v) +2 d(w) -2
flow network G flow network G’

Theorem. There exists a circulation in G iff there exists a circulation in G'.

Moreover, if all demands, capacities, and lower bounds in G are integers,
then there exists a circulation in G that is integer-valued.

Pf sketch. f(e) is a circulation in G iff f'(e) =f(e) — £(e) is a circulation in G'.

49
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Survey design

Design survey asking n, consumers about n, products. «—
Can survey consumer i about product j only if they own it.

Ask consumer i between ¢; and ¢;' questions.
Ask between p; and p/ consumers about product j.

Goal. Design a survey that meets these specs, if possible.

!

one survey question
per product

Bipartite perfect matching. Special case whenc¢, = ¢/ = p; = p/ = 1.

51



Survey design

Max-flow formulation. Model as a circulation problem with lower bounds.

AC
AcC
AcC
AC

Al

d edge (i, ) if consumer j owns product i.
edge from s to consumer .

C
d edge from product i to v.
d edge from r to s.
demands = 0.

Integer circulation < feasible survey design.

[0, ]

[0, 1]

[c1,c1] [p1,p1']

& ©
@ ® ©

@

consumers products

52
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Airline scheduling

Airline scheduling.
« Complex computational problem faced by airline carriers.
« Must produce schedules that are efficient in terms of equipment usage,
crew allocation, and customer satisfaction. «— evenin presence of
unpredictable events, such as

« One of largest consumers of high-powered weather and breakdowns
algorithmic techniques.

“Toy problem.”
« Manage flight crews by reusing them over multiple flights.
* Input: set of & flights for a given day.
* Flight i leaves origin o, at time s, and arrives at destination d; at time f..

* Minimize number of flight crews.

54



Airline scheduling

Circulation formulation. [to see if ¢ crews suffice]

: .. u; = start of flight i
* For each flight i, include two nodes u; and vi. «<— |, - end of flight i

Add source s with demand —¢, and edges (s, u;)) with capacity 1.

Add sink r with demand ¢, and edges (v;, r) with capacity 1.

For each i, add edge (u;, vi) with lower bound and capacity 1.

if flight j reachable from i, add edge (v;, uj) with capacity 1.

crew can end day
with any flight

crew can begin day
with any flight @ @ /

[0, 1] [0, 1] .

@) (u3) () (D
e
use ¢ crews ()— 1.1 —(p)

flight 2 is performed

same crew can do flights 2 and 4 ‘o



Airline scheduling: running time

Theorem. The airline scheduling problem can be solved in O(k3 log k) time.
Pf.
* k= number of flights.
* ¢ = number of crews (unknown).
O(k) nodes, O(k*) edges.
At most k crews needed.

= solve log, k circulation problems. «— binary search for min value ¢*

Value of any flow is between 0 and «.
= at most kK augmentations per circulation problem.
Overall time = O(k* log k).

Remark. Can solve in O(k’) time by formulating as minimum-flow problem.

56



Airline scheduling: postmortem

Remark. We solved a toy version of a real problem.

Real-world problem models countless other factors:

« Union regulations: e.g., flight crews can fly only a certain number of
hours in a given time window.
Need optimal schedule over planning horizon, not just one day.

Deadheading has a cost.

Flights don’t always leave or arrive on schedule.

Simultaneously optimize both flight schedule and fare structure.

Message.
« Our solution is a generally useful technique for efficient reuse of limited
resources but trivializes real airline scheduling problem.
« Flow techniques useful for solving airline scheduling problems
(and are widely used in practice).
« Running an airline efficiently is a very difficult problem.

57
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Image segmentation

Image segmentation.
- Divide image into coherent regions.
« Central problem in image processing.

Ex. Separate human and robot from background scene.

59



Image segmentation

Foreground / background segmentation.

- Label each pixel in picture as belonging to

foreground or background. o

V = set of pixels, E = pairs of neighboring pixels. /¢

a; > 0 is likelihood pixel i in foreground. °

b, = 0 is likelihood pixel i in background.

p;= 0 is separation penalty for labeling one of i

and j as foreground, and the other as background.

Goals.
* Accuracy: if a; > b, in isolation, prefer to label i in foreground.
* Smoothness: if many neighbors of i are labeled foreground,
we should be inclined to label i as foreground.

* Find partition (A, B) that maximizes: Za’i 4 ij _ Z Dij

: /; b\k | icA jeB (4,)EE
oregroun acC Froun ..
s s |AN{i,5}|=1

60




Image segmentation

Formulate as min-cut problem.
 Maximization.
« No source or sink.
« Undirected graph.

Turn into minimization problem.

- Maximizing Zai + ij

i€A jEB

* is equivalent to minimizing

Zai + ij — Za’i _ ij 4

A eV JjeV
a constant

Z Dij

(4,5)€E

|[AN{%,5}=1

1€EA

jEB

. or alternatively »_a; + > bi + >

jEB i€ A

(i,7)€E
|AN{4,j} =1

Dij

2

(4,5) € E
|[An{e,5}=1

Pij

61



Image segmentation

Formulate as min-cut problem G’ =(V', E"). edge in G

* Include node for each pixel. O - O
« Use two antiparallel edges instead of

undirected edge.

* Add source s to correspond to foreground. /pff \Q
>

- Add sink 7 to correspond to background. O Pi

two antiparallel edges in G’

¢ O O O O

62



Image segmentation

Consider min cut (A,B) in G'.
- A=foreground.

cap(A,B) = Y a; + D b + Y py

JEB i€A (i,j)EE if i and j on different sides,
iCA, jEB pij counted exactly once

« Precisely the quantity we want to minimize.

& " £4 "

— \\ .
\V
Q" ’@ip — 0
A bi~_

¢ O O O O



Grabcut image segmentation

Grabcut. [ Rother-Kolmogorov-Blake 2004 ]

“GrabCut” — Interactive Foreground Extraction using lterated Graph Cuts

Carsten Rother* Vladimir Kolmogorov' Andrew Blake*
Microsoft Research Cambridge, UK

Figure 1: Three examples of GrabCut. The user drags a rectangle loosely around an object. The object is then extracted automatically.

64
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Project selection (maximum weight closure problem)

Projects with prerequisites. can be positive
/ or negative

* Set of possible projects P: project v has associated revenue p,.

* Set of prerequisites E: (v,w) € E means w is a prerequisite for v.

* A subset of projects A C P is feasible if the prerequisite of every project
in A also belongs to A.

Project selection problem. Given a set of projects P and prerequisites E,
choose a feasible subset of projects to maximize revenue.

MANAGEMENT SCIENCE
Vol. 22, No. 11, July, 1976
Printed in U.S.A.

MAXIMAL CLOSURE OF A GRAPH AND
APPLICATIONS TO COMBINATORIAL
PROBLEMS*¥

JEAN-CLAUDE PICARD

Ecole Polytechnique, Montreal

This paper generalizes the selection problem discussed by J. M. Rhys [12], J. D. Murchland
[9], M. L. Balinski [1] and P. Hansen [4]. Given a directed graph G, a closure of G is defined
as a subset of nodes such that if a node belongs to the closure all its successors also belong to
the set. If a real number is associated to each node of G a maximal closure is defined as a
closure of maximal value. 66



Project selection: prerequisite graph

Prerequisite graph. Add edge (v,w) if wis a prerequisite for v.

O > O =W
7 )
< © ()

{v,w, x}is feasible {v,x}is infeasible
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Project selection: min-cut formulation

Min-cut formulation.
* Assign a capacity of o« to each prerequisite edge.
* Add edge (s, v) with capacity p, if p,>0.
* Add edge (v, with capacity —p, if p, <O.
* For notational convenience, define p, = p, = 0.

AN
|

py———>@—oo __pz

\o/\/@/
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Project selection: min-cut formulation

Claim. (A, B) is min cut iff A-{s} is an optimal set of projects.
- Infinite capacity edges ensure A — {s} is feasible.

* Max revenue because: cap(4,B) = >  p, + > (—p)
vEB: p, >0 vEA: p, <0
- Y n X
a constant v P>l veEA
N

minimizing this is equivalent
to maximizing revenue
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Open-pit mining

Open-pit mining. [studied since early 1960s]
- Blocks of earth are extracted from surface to retrieve ore.
* Each block v has net value p, = value of ore — processing cost.
* Can’t remove block v until both blocks w and x are removed.

W\ /.X
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Baseball elimination
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~ SPORTING G

By Nancy Gay
Chronicle St Wilter

With the Smack of another Nj.
tional 1

away,
ants’ run gt
the divisjop UEE L5 2 il
tle ended last GIANTS 2
night, Just as

they were handing the visiting St.
Louis Cardinals ay even bigger
lead in the NL Centra]

ficially

By Gary Swan
Chronicle Stqr Writer

fect
The bye week has come at a per
time for the 49ers and quarterback Steve
Young. If they had a game next Sunday,
there's a good chance Young would not
play.

ey Pt tha nullod groin muscle on his up-

West Race

“Where we are, you're going o

. be eliminateq Sooner or Iater,”
or Glants’ Ney, Stadium aker sajd quietly. “But it doesn’t

SEE PAGE ], MAIN NEWs alter the fact that we've stj)) got to

Play ball. You'ye still got to play
8ames left; they cannot win g hard, the fang come out to watch

You play. You've gotto play for the
fact of loving to Play, no matter
where you are {p the standings.

In San Diego, Greg Vaughn's
threerup homer in the elghth
Pushed the Padres gyer the Pirateg
and officially shoyeq the rest of
the Giantg’ Season into the bhack.
ground. Op the heels of thejr te-
dlous 6.2 Joss before an announced

0,307 at Candlestick
Park, the Glants fell 1914 games off
ad.

Flnanélng In Place

As it i3, the worst the Padres- off on the right foot In thelr 1op “You've 80t to play the role of
(8065) can finish 15 89,8y 1, Gl gest homestand of year (15 spoller, to not make it eggjor on
ants have fallen ¢, 5983 with 29 games, 14 days),

GIANTS; Page Ds Col 3
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Baseball elimination problem

Q. Which teams have a chance of finishing the season with the most wins?

0 A 83 71 8 _ 1 6 |

Atlanta

] Philly 80 79 3 ] - 0 2
2 New York 78 78 6 6 0 — 0
3 Montreal 77 82 3 ] 2 0 —

Montreal is mathematically eliminated.
* Montreal finishes with <80 wins.
+ Atlanta already has 83 wins.

Remark. This is the only reason sports writers appear to be aware of —
conditions are sufficient but not necessary!
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Baseball elimination problem

Q. Which teams have a chance of finishing the season with the most wins?

0 A 83 71 8 _ 1 6 |

Atlanta
1 Qi Philly 80 79 3 1 - 0 2
2 New York 78 78 6 6 0 — 0
3 Montreal 77 82 3 1 2 0 -

Philadelphia is mathematically eliminated.
* Philadelphia finishes with <83 wins.
* Either New York or Atlanta will finish with = 84 wins.

Observation. Answer depends not only on how many games already won
and left to play, but on whom they’re against.
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Baseball elimination problem

Current standings.
* Set of teams S.
* Distinguished team z € S.
* Team x has won w, games already.
* Teams x and y play each other r,, additional times.

Baseball elimination problem. Given the current standings, is there any
outcome of the remaining games in which team z finishes with the most

(or tied for the most) wins?

SIAM REVIEW
Vol. 8, No. 3, July, 1966

POSSIBLE WINNERS IN PARTIALLY COMPLETED TOURNAMENTS*

BENJAMIN L. SCHWARTZt

1. Introduction. In this paper, we shall investigate certain questions in tourna-
ment scheduling. For definiteness, we shall use the terminology of baseball. We
shall be concerned with the categorization of teams into three classes during
the closing days of the season. A team may be definitely eliminated from pen-
nant possibility; it may be in contention, or it may have clinched the champion-
ship. It will be our convention that a team that can possibly tie for the pennant
is considered still in contention. In this paper necessary and sufficient conditions
are developed to classify any team properly into the appropriate category.
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Baseball elimination problem: max-flow formulation

Can team 4 finish with most wins?
« Assume team 4 wins all remaining games = w, + r, wins.
- Divvy remaining games so that all teams have < w, + r, wins.

games left team 2 can still win

between 1 and 2 @ this many more games
OO /
@—glz—) 1-2 G0 )@7 Wy +T,—W, —)@

team nodes

@ (each team other than 4)

game nodes
(each pair of teams other than 4)
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Baseball elimination problem: max-flow formulation

Theorem. Team 4 not eliminated iff max flow saturates all edges leaving s.
Pf.
* |Integrality theorem = each remaining game between x and y added to
number of wins for team x or team y.
» Capacity on (x,r) edges ensure no team wins too many games. =

games left team 2 can still win

between 1 and 2 @ this many more games
OO /
@—glz—) 1-2 G0 )@7 Wy +r,—w, —)@

team nodes

@ (each team other than 4)

game nodes
(each pair of teams other than 4)
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Baseball elimination: explanation for sports writers

Q. Which teams have a chance of finishing the season with the most wins?

New York

Baltimore 71 63 28 3 -
Boston 69 66 27 8 2
Toronto 63 /2 27 / /
Detroit 49 86 27 3 4

AL East (August 30, 1996)

Detroit is mathematically eliminated.
* Detroit finishes with <76 wins.
* Wins for R = {NYY, BAL, BOS, TOR } = 278.
* Remaining games among { NYY, BAL, BOS, TOR }
* Average team in R wins 305/4 =76.25 games.

2 7/ 4
- 0 0
0 - 0
0 0 =

=3+8+7+2+7=27.
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Baseball elimination: explanation for sports writers

Certificate of elimination.

# wins # remaining games

/ \ r % A\

TCS, wl)= Y w,, gT):= S8,
€T {x,y} & T

Theorem. [Hoffman—Rivlin 1967] Team zis eliminated iff there exists a

subset 7T* such that w(T*)+ g(T*)
w,+g, <
| T*|
Pf. < - -
+
* Suppose there exists 7* C S such that w_+g, < W I)T*(glj( ) _

* Then, the teams in T* win at least w(T*) + g(T*)) / | T*| games on average.

* This exceeds the maximum number that team z can win. =
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Baseball elimination: explanation for sports writers

Pf. =
* Use max-flow formulation, and consider min cut (A, B).

* Let 7 = team nodes on source side A of min cut.

* Observe that game node x—y € A iff both x& T* and y & T™*.
- infinite capacity edges ensure if x—y € A, then bothxeAand ye A
- ifx€A and yE A but x—y & A, then adding x—y to A decreases the

capacity of the cut by g,

O O
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Baseball elimination: explanation for sports writers

Pf. =
* Use max-flow formulation, and consider min cut (A, B).
* Let 7 = team nodes on source side A of min cut.
* Observe that game node x—y € A iff both x & T and y € T*.
* Since team z is eliminated, by max-flow min-cut theorem,
g(S-{z}) > cap(A, B)

capacity of game edges leaving s capacity of team edges entering t

N\

= eS—{h-g@TH + Intg-wy)

xeT*

= 88-{zp)-s(T*) - w(T*) + IT*l(w +g,)

w(T™)+g(T™)
WA

* Rearranging terms: w,+g, <
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