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Ford-Fulkerson algorithm: exponentialtime example

0 max flow

Bad news. Number of augmenting paths can be exponential in input size.
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Bad news. Number of augmenting paths can be exponential in input size.

1st augmenting path
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Bad news. Number of augmenting paths can be exponential in input size.
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Bad news. Number of augmenting paths can be exponential in input size.
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Bad news. Number of augmenting paths can be exponential in input size.

3rd augmenting path

X v
’
\QQ 9

/ )(/1’
/00\ / :

Ford-Fulkerson algorithm: exponentialtime example

Bad news. Number of augmenting paths can be exponential in input size.
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Bad news. Number of augmenting paths can be exponential in input size.
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Bad news. Number of augmenting paths can be exponential in input size.
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Bad news. Number of augmenting paths can be exponential in input size.
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Ford-Fulkerson algorithm: pathological example

Intuition. Let »>0 satisfy r>=1-r. 1—r
* Initially, some residual capacities are 1 and r. /
* After two augmenting paths, some residual capacities are r and .
* After two more augmenting paths, some residual capacities are > and .

* After two more, some residual capacities are r* and r*. \
» By carefully choreographing the augmenting paths, \ r—r?
infinitely many residual capacities arise! r2—p3
V5 —1
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augmenting path 1: s»w—-v-t (bottleneck capacity = 1)
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®

C sufficiently large
that it won’t ever
be a bottleneck
(we'll suppress)

augmenting path 2: s2u—-v—->w—x—-t (bottleneck capacity = r)
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augmenting path 3: s»w—-v—-u—t (bottleneck capacity = r)
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augmenting path 5: s—»x—-w—-v—t (bottleneck capacity = r2)
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augmenting path 4: s—»u—v-ow-x—t (bottleneck capacity = r2)

r‘ =1—r
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augmenting path 6: s—»u—v—-w-x—t (bottleneck capacity = r3)
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augmenting path 7: sow—-v—-u—t (bottleneck capacity = r3)

1< /1

Ford-Fulkerson algorithm: pathological example

(- )

augmenting path 9: s—»>x—-w—-v—t (bottleneck capacity = r4)
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Ford-Fulkerson algorithm: pathological example

augmenting path 8: s—»u—v-ow—-x—t (bottleneck capacity = r4)

Ford-Fulkerson algorithm: pathological example
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flow after augmenting path 1: {r-ri, 1,1 -r0} (value of flow =
flow after augmenting path 5: {r-r3,1,1 - r2} (value of flow =

flow after augmenting path 9: {r-1r5 1,1 -r4} (value of flow =

@

1)
1+ 2r + 2r2)

1+ 2r + 2r2 + 2r3 + 2r9)
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Ford-Fulkerson algorithm: pathological example

Theorem. The Ford-Fulkerson algorithm may not terminate; moreover, it
may convergde to a value not equal to the value of the maximum flow.

Pf.

» After (1 + 4k) augmenting paths of the form just described,

the value of the flow

2%
= 1+2>r

i=1
< 142378

i=1
= 2r
a 1—r
< 5

* Value of maximum flow = 2C + 1.
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Abstract

It is widely known that the Ford-Fulkerson procedure for finding the maximum flow in a
network need not terminate if some of the capacities of the network are irrational. Ford and
Fulkerson gave as an example a network with 10 vertices and 48 edges on which their procedure
may fail to halt. We construct much smaller and simpler networks on which the same may
happen. Our smallest network has only 6 vertices and 8 edges. We show that it is the smallest
example possible
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