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Maximum Flow Applications Contents

Max flow extensions and applications.

■ Disjoint paths and network connectivity.

■ Bipartite matchings.

■ Circulations with upper and lower bounds.

■ Census tabulation (matrix rounding).

■ Airline scheduling.

■ Image segmentation.

■ Project selection (max weight closure).

■ Baseball elimination.
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Disjoint path network:  G = (V, E, s, t).

■ Directed graph (V, E), source s, sink t.

■ Two paths are edge-disjoint if they have no arc in common.

Disjoint path problem: find max number of edge-disjoint s-t paths.

■ Application:  communication networks.
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Disjoint path network:  G = (V, E, s, t).

■ Directed graph (V, E), source s, sink t.

■ Two paths are edge-disjoint if they have no arc in common.

Disjoint path problem: find max number of edge-disjoint s-t paths.
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Max flow formulation: assign unit capacity to every edge.

Theorem. There are k edge-disjoint paths from s to t if and only if the 
max flow value is k.
Proof. ⇒

■ Suppose there are k edge-disjoint paths P1, . . . , Pk.

■ Set f(e) = 1 if e participates in some path Pi ;  otherwise, set f(e) = 0.

■ Since paths are edge-disjoint, f is a flow of value k.

Disjoint Paths
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Max flow formulation: assign unit capacity to every edge.

Theorem. There are k edge-disjoint paths from s to t if and only if the 
max flow value is k.
Proof.  ⇐

■ Suppose max flow value is k.  By integrality theorem, there exists 
{0, 1} flow f of value k.

■ Consider edge (s,v) with f(s,v) = 1.
– by conservation, there exists an arc (v,w) with f(v,w) = 1
– continue until reach t, always choosing a new edge

■ Produces k (not necessarily simple) edge-disjoint paths.

Disjoint Paths
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Network connectivity network:  G = (V, E, s, t) .

■ Directed graph (V, E), source s, sink t.

■ A set of edges F ⊆ E disconnects t from s if all s-t paths uses at 
least on edge in F.

Network connectivity: find min number of edges whose removal 
disconnects t from s.

Network Connectivity
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Network connectivity network:  G = (V, E, s, t) .

■ Directed graph (V, E), source s, sink t.

■ A set of edges F ⊆ E disconnects t from s if all s-t paths uses at 
least on edge in F.

Network connectivity: find min number of edges whose removal 
disconnects t from s.

Network Connectivity
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Disjoint Paths and Network Connectivity

Menger’s Theorem (1927). The max number of edge-disjoint s-t paths is 
equal to the min number of arcs whose removal disconnects t from s.

s

2

3

4

5

6

7

t s

2

3

4

5

6

7

t



10

Disjoint Paths and Network Connectivity

Menger’s Theorem (1927). The max number of edge-disjoint s-t paths is 
equal to the min number of arcs whose removal disconnects t from s.

Proof.  ⇐
■ Suppose the removal of F ⊆ E disconnects t from s, and |F| = k.

■ All s-t paths use at least one edge of F. Hence, the number of edge-
disjoint paths is at most k.
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Disjoint Paths and Network Connectivity

Menger’s Theorem (1927). The max number of edge-disjoint s-t paths is 
equal to the min number of arcs whose removal disconnects t from s.

Proof.  ⇒
■ Suppose max number of edge-disjoint paths is k.

■ Then max flow value is k.

■ Max-flow min-cut  ⇒ cut (S, T) of capacity k.

■ Let F be set of edges going from S to T.

■ |F| = k, and definition of cut implies F disconnects t from s.
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Matching.

■ Input:  undirected graph G = (V, E).

■ M ⊆ E is a matching if each node appears in at most edge in M.

■ Max matching:  find a max cardinality matching.

Matching
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Bipartite Matching

Bipartite matching.

■ Input:  undirected, bipartite graph G = (L ∪ R, E).

■ M ⊆ E is a matching if each node appears in at most edge in M.

■ Max matching:  find a max cardinality matching.

1

3

5

1’

3’

5’

2

4

2’

4’

Matching

1-2’, 3-1’, 4-5’  

RL



14

Bipartite Matching

Bipartite matching.

■ Input:  undirected, bipartite graph G = (L ∪ R, E).

■ M ⊆ E is a matching if each node appears in at most edge in M.

■ Max matching:  find a max cardinality matching.
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Max flow formulation.

■ Create directed graph G’ = (L ∪ R ∪ {s, t},  E’ ).

■ Direct all arcs from L to R, and give infinite (or unit) capacity.

■ Add source s, and unit capacity arcs from s to each node in L.

■ Add sink t, and unit capacity arcs from each node in R to t.

Bipartite Matching
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Claim. Matching in G of cardinality k induces flow in G’ of value k.

■ Given matching M = { 1 - 2’, 3 - 1’, 4 - 5’ } of cardinality 3.

■ Consider flow that sends 1 unit along each of 3 paths:
s - 1 - 2’ - t, s - 3 - 1’ - t, s - 4 - 5’ - t.

■ f is a flow, and has cardinality 3.

Bipartite Matching:  Proof of Correctness
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Claim. Flow f of value k in G’ induces matching of cardinality k in G.

■ By integrality theorem, there exists {0, 1}-valued flow f of value k.

■ Consider M = set of edges from L to R with f(e) = 1.
– each node in L and R participates in at most one edge in M
– |M| = k:  consider cut (L ∪ s, R ∪ t)

Bipartite Matching:  Proof of Correctness
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Perfect matching.

■ Input:  undirected graph G = (V, E).

■ A matching M ⊆ E is perfect if each node appears in exactly one 
edge in M.

Perfect bipartite matching.

■ Input:  undirected, bipartite graph G = (L ∪ R, E),  |L| = |R| = n.

■ Can determine if bipartite graph has perfect matching by running
matching algorithm.

Is there an easy way to convince someone that a bipartite graph does 
not have a perfect matching?

■ Need good characterization of such graphs.

Perfect Matching
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Let X be a subset of nodes, and let N(X) be the set of nodes adjacent 
to nodes in x.

Observation. If a bipartite graph G = (L ∪ R, E), has a perfect 
matching, then |N(X)| ≥ |X| for every X ⊆ L.

■ Each node in X has to be matched to a different node in N(X).

Perfect Matching
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No perfect matching:
X = {2, 4, 5}, N(X) = {2’, 5’}.
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Hall’s Theorem. Let G = (L ∪ R, E) be a bipartite graph with |L| = |R|. 
Then, either

■ (i)  G either has a perfect matching, or

■ (ii) There exists a subset X ⊆ L such that |N(X)| < |X|.

Perfect Matching
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Proof. Suppose G does not have perfect matching.  Then, there exists 
a subset X ⊆ L such that |N(X)| < |X|.

■ Let (S, T)  be min cut.  By max-flow min-cut, cap(S, T) < n.

Perfect Matching
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Proof. Suppose G does not have perfect matching.  Then, there exists 
a subset X ⊆ L such that |N(X)| < |X|.

■ Let (S, T)  be min cut.  By max-flow min-cut, cap(S, T) < n.

■ Define X = LS = L ∩ S,  LT = L ∩ S ,  RS = R ∩ S.

■ cap(S, T)  =  | LT | + |RS | ⇒ |RS | <  |LS |.

■ For all arcs (v, w) ∈ E:  v ∈ S ⇒ w ∈ S. (min cut can’t use ∞ arcs)
– N(LS ) ⊆ RS ⇒ |N(LS )| ≤ |RS |.

Perfect Matching
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Dancing Problem (k-Regular Bipartite Graph)

Dancing problem.

■ Exclusive Ivy league party attended by n men and n women.

■ Each man knows exactly k women.

■ Each woman knows exactly k men.

■ Acquaintances are mutual.

■ Is it possible to arrange a dance so that each man dances with a
different woman that he knows?

Mathematical reformulation: does
every k-regular bipartite graph have
a perfect matching?
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Mathematical reformulation: does every k-regular bipartite graph 
have a perfect matching?

Slick solution:

■ Size of max matching is equal to max flow in network G’.

■ Consider following flow:

■ f is a flow and | f | = n.

■ Integrality theorem  ⇒
integral flow of value n ⇒
perfect matching.

Dancing Problem (k-Regular Bipartite Graph)
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Vertex Cover

Given an undirected graph G = (V, E), a vertex cover is a subset of 
vertices C ⊆ V such that:

■ Every arc (v, w) ∈ E has either v ∈ C or w ∈ C or both.
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Vertex Cover

Given an undirected graph G = (V, E), a vertex cover is a subset of 
vertices C ⊆ V such that:

■ Every arc (v, w) ∈ E has either v ∈ C or w ∈ C or both.
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Vertex Cover

Given an undirected graph G = (V, E), a vertex cover is a subset of 
vertices C ⊆ V such that:

■ Every arc (v, w) ∈ E has either v ∈ C or w ∈ C or both.

Observation. Let M be a matching, and let C be a vertex cover.
Then,  |M| ≤ |C|.

■ Each vertex can cover at most one edge in any matching.
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Vertex Cover:  König-Egerváry Theorem

Given an undirected graph G = (V, E), a vertex cover is a subset of 
vertices C ⊆ V such that:

■ Every arc (v, w) ∈ E has either v ∈ C or w ∈ C or both.

König-Egerváry Theorem:  In a bipartite, undirected graph the max 
cardinality of a matching is equal to the min cardinality of a vertex 
cover.
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M* = { 1-1', 2-2', 3-3', 5-5' }
|M*| = 4

C* = { 3, 1', 2', 5' } 
|C*| = 4
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Vertex Cover: Proof of König-Egerváry Theorem

König-Egerváry Theorem:  In a bipartite, undirected graph, the sizes of 
max matching and min vertex cover are equal. 

■ Suffices to find matching M* and cover C* such that |M*| = |C*|.

■ Use max flow formulation,
and let (S, T) be min cut. 

■ Define L S = L ∩ S, LT = L ∩ T, 
RS = R ∩ S, RT = R ∩ T , and C* = L T ∪ RS .

■ Claim 1. C* is a vertex cover.
– consider (v, w) ∈ E 
– v ∈ LS, w ∈ RT impossible since infinite capacity
– thus, v ∈ LT or w ∈ RS or both
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Vertex Cover: Proof of König-Egerváry Theorem

König-Egerváry Theorem:  In a bipartite, undirected graph, the sizes of 
max matching and min vertex cover are equal. 

■ Suffices to find matching M* and cover C* such that |M*| = |C*|.

■ Use max flow formulation,
and let (S, T) be min cut. 

■ Define L S = L ∩ S, LT = L ∩ T, 
RS = R ∩ S, RT = R ∩ T , and C* = L T ∪ RS .

■ Claim 1. C* is a vertex cover.

■ Claim 2. |C*| = |M*|.
– max-flow min-cut theorem  ⇒ |M*| = cap(S, T)
– only arcs of form (s, v) or (w, t) contribute to cap(S, T)
– |M*| = u(S, T) = |LT| + |RS| = |C*|.
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Which max flow algorithm to use for bipartite matching / vertex cover?

■ Generic augmenting path:  O( m |f *| ) = O(mn).

■ Capacity scaling:  O(m2 log U ) = O(m2).

■ Shortest augmenting path:  O(m n2).

Seems to indicate "more clever" algorithms are not as good as we
first thought.

Bipartite Matching and Vertex Cover

No - just need more clever analysis!  For bipartite matching, 
shortest augmenting path algorithm runs in O(m n1/2) time.
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Unit Capacity Simple Networks

Unit capacity simple network.

■ Every arc capacity is one.

■ Every node has either:
(i)  at most one incoming arc, or
(ii) at most one outgoing arc.

■ If G is simple unit capacity, then so is
Gf, assuming f is {0, 1} flow.

Shortest augmenting path algorithm.

■ Normal augmentation:  length of shortest path doesn’t change.

■ Special augmentation:  length of shortest path strictly increases.

Theorem.  Shortest augmenting path algorithm runs in O(m n1/2) time.

■ L1.  Each phase of normal augmentations takes O(m) time.

■ L2.  After at most n1/2 phases, | f | ≥ | f *| - n1/2.

■ L3.  After at most n1/2 additional augmentations, flow is optimal.
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Unit Capacity Simple Networks

Level graph

Augment

Lemma 1. Phase of normal augmentations takes O(m) time.

■ Start at s, advance along an arc in LG until reach t or get stuck.
– if reach t, augment and delete ALL arcs on path
– if get stuck, delete node and go to previous node
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Unit Capacity Simple Networks

Level graph

Delete node and retreat

Lemma 1. Phase of normal augmentations takes O(m) time.

■ Start at s, advance along an arc in LG until reach t or get stuck.
– if reach t, augment and delete ALL arcs on path
– if get stuck, delete node and go to previous node
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Unit Capacity Simple Networks

Level graph

Augment

Lemma 1. Phase of normal augmentations takes O(m) time.

■ Start at s, advance along an arc in LG until reach t or get stuck.
– if reach t, augment and delete ALL arcs on path
– if get stuck, delete node and go to previous node
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Unit Capacity Simple Networks

Level graph

STOP
Length of shortest path has increased.

Lemma 1. Phase of normal augmentations takes O(m) time.

■ Start at s, advance along an arc in LG until reach t or get stuck.
– if reach t, augment and delete ALL arcs on path
– if get stuck, delete node and go to previous node
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Unit Capacity Simple Networks

Lemma 1. Phase of normal augmentations takes O(m) time.

■ Start at s, advance along an arc in LG until reach t or get stuck.
– if reach t, augment and delete ALL arcs on path
– if get stuck, delete node and go to previous node

■ O(m) running time.
– O(m) to create level graph
– O(1) per arc, since each arc traversed at most once
– O(1) per node deletion 
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Unit Capacity Simple Networks

ARRAY pred[v ∈ V]
LG ← level graph of Gf
v ← s, pred[v] ← nil

REPEAT
WHILE (there exists (v,w) ∈ LG)

pred[w] ← v, v ← w
IF (v = t)

P ← path defined by pred[]
f ← augment(f, P)
update LG
v ← s, pred[v] ← nil

delete v from LG
UNTIL (v = s)

RETURN f

AdvanceRetreat(V, E, f, s, t)

advance

retreat

augment
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Unit Capacity Simple Networks

Lemma 2. After at most n1/2 phases, | f | ≥ | f *| - n1/2.

■ After n1/2 phases, length of shortest augmenting path is >  n1/2.

■ Level graph has more than n1/2 levels.

■ Let 1 ≤ h ≤ n1/2 be layer with min number of nodes:  |Vh| ≤ n1/2.

VhV0 Vn
1/2

Level graph

V1
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Unit Capacity Simple Networks

Lemma 2. After at most n1/2 phases, | f | ≥ | f *| - n1/2.

■ After n1/2 phases, length of shortest augmenting path is >  n1/2.

■ Level graph has more than n1/2 levels.

■ Let 1 ≤ h ≤ n1/2 be layer with min number of nodes:  |Vh| ≤ n1/2.

■ S := {v : l(v) < h} ∪ {v : l(v) = h and v has ≤ 1 outgoing residual arc}.

■ capf (S, T)  ≤ |Vh| ≤ n1/2 ⇒ | f |  ≥ | f *|  - n1/2.

VhV0 Vn
1/2V1

Level graphResidual arcs
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Baseball Elimination

Over on the radio side the producer’s saying,

■ "See that thing in the paper last week about Einstein? . . . Some 
reporter asked him to figure out the mathematics of the pennant 
race.  You know, one team wins so many of their remaining games,
the other teams win this number or that number.  What are the 
myriad possibilities? Who’s got the edge?"

■ "The hell does he know?"

■ "Apparently not much.  He picked the Dodgers
to eliminate the Giants last Friday."
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Baseball Elimination

Which teams have a chance of finishing the season with most wins? 

■ Montreal eliminated since it can finish with at most 80 wins, but 
Atlanta already has 83.

■ wi + ri < wj ⇒ team i eliminated.

■ Only reason sports writers appear to be aware of.

■ Sufficient, but not necessary!

Team
i

Against = rijWins
wi

To play
ri

Losses
li Atl Phi NY Mon

Montreal 77 382 1 2 0 -

New York 78 678 6 0 - 0

Philly 80 379 1 - 0 2

Atlanta 83 871 - 1 6 1
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Baseball Elimination

Which teams have a chance of finishing the season with most wins? 

■ Philly can win 83, but still eliminated . . .

■ If Atlanta loses a game, then some other team wins one.

Answer depends not just on how many games already won and left to 
play, but also on whom they’re against.

Team
i

Against = rijWins
wi

To play
ri

Losses
li Atl Phi NY Mon

Montreal 77 382 1 2 0 -

New York 78 678 6 0 - 0

Philly 80 379 1 - 0 2

Atlanta 83 871 - 1 6 1
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Baseball Elimination

Baseball elimination problem.

■ Set of teams X.

■ Distinguished team x ∈ X.

■ Team i has won wi games already.

■ Teams i and j play each other rij additional times.

■ Is there any outcome of the remaining games in which team x 
finishes with the most (or tied for the most) wins?
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Can team 3 finish with most wins?

■ Assume team 3 wins all remaining games  ⇒ w3 + r3 wins. 

■ Divvy remaining games so that all teams have ≤ w3 + r3 wins.

Baseball Elimination:  Max Flow Formulation
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Theorem. Team 3 is not eliminated if and only if max flow saturates all
arcs leaving source.

■ Integrality theorem  ⇒ each remaining game between i and j added 
to number of wins for team i or team j.

■ Capacity on (v, t) arcs ensure no team wins too many games.

Baseball Elimination:  Max Flow Formulation

s

1-5

2-5

4-5

2

4

5

t

1-2

1-4

2-4

1

r24 = 7 ∞

∞
w3 + r3 - w4

team 4 can still
win this many
more games

games left



48

Baseball Elimination:  Explanation for Sports Writers

Which teams have a chance of finishing the season with most wins? 

■ Detroit could finish season with 49 + 27 = 76 wins.

Team
i

Against = rijWins
wi

To play
ri

Losses
li NY Bal Bos Tor

Toronto 63 2772 7 7 0 -

Boston 69 2766 8 2 - 0

Baltimore 71 2863 3 - 2 7

NY 75 2859 - 3 8 7

Detroit 49 2786 3 4 0 0

Det

-

0

4

3

-

AL East:  August 30, 1996
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Baseball Elimination:  Explanation for Sports Writers

Which teams have a chance of finishing the season with most wins? 

■ Detroit could finish season with 49 + 27 = 76 wins.

Consider subset R = {NY, Bal, Bos, Tor}

■ Have already won w(R) = 278 games.

■ Must win at least r(R) = 27 more.
! Average team in R wins at least 305/4 > 76 games.

Team
i

Against = rijWins
wi

To play
ri

Losses
li NY Bal Bos Tor

Toronto 63 2772 7 7 0 -

Boston 69 2766 8 2 - 0

Baltimore 71 2863 3 - 2 7

NY 75 2859 - 3 8 7

Detroit 49 2786 3 4 0 0

Det

-

0

4

3

-

AL East:  August 30, 1996
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Baseball Elimination:  Explanation for Sports Writers

Certificate of elimination.

If                                                then x is eliminated (by R).

Theorem (Hoffman-Rivlin, 1967). Team x is eliminated if and only if 
there exists a subset R that eliminates x.

■ Proof idea.  Let R = team nodes on source side of min cut.

,:)(,:)(,

games remaining #

,
2
1

wins # 44 84476876
∑=∑=⊆
∈∈ Rji

ij
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Baseball Elimination:  Explanation for Sports Writers

Proof of Theorem.

■ Use max flow formulation, and consider min cut (S, T).

■ Define R = team nodes on source side of min cut = T ∩ S.

■ Claim.  i-j ∈ S if and only if i ∈ R and j ∈ R.
– infinite capacity arcs ensure if i-j ∈ S then i ∈ S and j ∈ S
– if i ∈ S and j ∈ S but i-j ∈ T, then adding i-j to S decreases 

capacity of cut
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team 4 can still win this 
many more games
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Baseball Elimination:  Explanation for Sports Writers

Proof of Theorem.

■ Use max flow formulation, and consider min cut (S, T).

■ Define R = team nodes on source side of min cut = T ∩ S.

■ Claim.  i-j ∈ S if and only if i ∈ R and j ∈ R.
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Baseball Elimination:  Explanation for Sports Writers

Proof of Theorem.

■ Use max flow formulation, and consider min cut (S, T).

■ Define R = team nodes on source side of min cut = T ∩ S.

■ Claim.  i-j ∈ S if and only if i ∈ R and j ∈ R.

■ Rearranging terms:
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Circulation with Demands

Circulation with demands.

■ Directed graph G = (V, E).

■ Arc capacities u(e), e ∈ E.

■ Node supply and demands d(v), v ∈ V.
– demand if d(v) > 0; supply if d(v) < 0; transshipment if d(v) = 0

A circulation is a function  f: E → ℜ that satisfies:

■ For each e ∈ E: 0   ≤ f(e) ≤ u(e) (capacity)

■ For each v ∈ V: (conservation)

Circulation problem: given (V, E, u, d), does there exist a circulation?
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A circulation is a function  f: E → ℜ that satisfies:

■ For each e ∈ E: 0   ≤ f(e)   ≤ u(e) (capacity)

■ For each v ∈ V: (conservation)
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A circulation is a function  f: E → ℜ that satisfies:

■ For each e ∈ E: 0   ≤ f(e)   ≤ u(e) (capacity)

■ For each v ∈ V: (conservation)

Necessary condition: sum of supplies = sum of demands.

■ Proof:  sum conservation constraints for every demand node v.
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Circulation with Demands

Max flow formulation.

■ Add new source s and sink t.

■ For each v with d(v) < 0, add arc (s, v) with capacity -d(v).

■ For each v with d(v) > 0, add arc (v, t) with capacity d(v).
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Circulation with Demands

Max flow formulation.

■ Add new source s and sink t.

■ For each v with d(v) < 0, add arc (s, v) with capacity -d(v).

■ For each v with d(v) > 0, add arc (v, t) with capacity d(v).
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Circulation with Demands

Max flow formulation.

■ Graph G has circulation if and only if G’ has max flow of value D
(saturates all arcs leaving s and entering t).
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Circulation with Demands

Max flow formulation.

■ Graph G has circulation if and only if G’ has max flow of value D
(saturates all arcs leaving s and entering t).

■ Moreover, if all capacities and demands are integers, and there 
exists a circulation, then there exists one that is integer-valued.

Characterization.

■ Given (V, E, u, d), there does not exists a circulation if and only if 
there exists a node partition (A, B) such that:

– demand by nodes in B exceeds supply of nodes in B plus max 
capacity of arcs going from A to B

■ Proof idea:  look at min cut in G’.
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Circulation with Demands and Lower Bounds

Feasible circulation.

■ Directed graph G = (V, E).

■ Arc capacities u(e) and lower bounds l(e), e ∈ E.
– force flow to make use of certain edges

■ Node supply and demands d(v), v ∈ V.

A circulation is a function  f: E → ℜ that satisfies:

■ For each e ∈ E: l(e) ≤ f(e) ≤ u(e) (capacity)

■ For each v ∈ V: (conservation)

Given (V, E, l, u, d), is there a circulation?
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Circulation with Demands and Lower Bounds

A circulation is a function  f: E → ℜ that satisfies:

■ For each e ∈ E: l(e) ≤ f(e)   ≤ u(e) (capacity)

■ For each v ∈ V: (conservation)

Idea: model lower bounds
with supply / demands.

Create network G’.
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Circulation with Demands and Lower Bounds

A circulation is a function  f: E → ℜ that satisfies:

■ For each e ∈ E: l(e) ≤ f(e)   ≤ u(e) (capacity)

■ For each v ∈ V: (conservation)

Create network G’.

Theorem.  There exists a circulation in G if and only if there exists a 
circulation in G’. If all demands, capacities, and lower bounds in G are 
integers, then there is a circulation in G that is integer-valued.

■ Proof idea:  f(e) is a circulation in G if and only if f’(e) = f(e) - l(e) is 
a circulation in G’.
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Matrix Rounding

Feasible matrix rounding.

■ Given a p x q matrix D = {di j } of real numbers.

■ Row i sum = ai, column j sum bj.

■ Round each dij, ai, bj up or down to integer so that sum of rounded 
elements in each row (column) equal row (column) sum.

■ Original application:  publishing US Census data.

Theorem: for any matrix, there exists a feasible rounding.

17.243.14 6.8 7.3

12.79.6 2.4 0.7

11.33.6 1.2 6.5

16.34 10.4 14.5

Original Data

173 7 7

1310 2 1

113 1 7

16 10 15

Possible Rounding
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Matrix Rounding

Feasible matrix rounding.

■ Given a p x q matrix D = {di j } of real numbers.

■ Row i sum = ai, column j sum bj.

■ Round each dij, ai, bj up or down to integer so that sum of rounded 
elements in each row (column) equal row (column) sum.

■ Original application:  publishing US Census data.

Theorem: for any matrix, there exists a feasible rounding.

■ Note:  "threshold rounding" doesn’t work.

1.050.35 0.35 0.35

1.650.55 0.55 0.55

0.9 0.9 0.9

Original Data Possible Rounding

10 0 1

21 1 0

1 1 1
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Matrix Rounding

Max flow formulation.

■ Original data provides circulation (all demands 0).

■ Integrality theorem  ⇒ there always exists feasible rounding!

s

1

2

3

1’

2’

3’

t

Row Column

17, 18

17.243.14 6.8 7.3

12.79.6 2.4 0.7

11.33.6 1.2 6.5

16.34 10.4 14.5

12, 13

11, 12

16, 17

10, 11

14, 15

3, 4

∞
Lower
bound

Upper
bound
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Airline Scheduling

Airline scheduling.

■ Complex computational problem faced by nation’s airline carriers.

■ Produces schedules for thousands of routes each day that are 
efficient in terms of:

– equipment usage, crew allocation, customer satisfaction
– in presence of unpredictable issues like weather, breakdowns

■ One of largest consumers of high-powered algorithmic techniques.

"Toy problem."

■ Manage flight crews by reusing them over multiple flights.

■ Input:  list of cities V.

■ Travel time t(v, w) from city v to w.

■ Flight i:  (oi, di, ti) consists of origin and destination cities, and 
departure time.
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Airline Scheduling

Max flow formulation.

■ For each flight i, include two nodes ui and vi.

■ Add source s with demand -c, and arcs (s, ui) with capacity 1.

■ Add sink t with demand c, and arcs (vj, t) with capacity 1.

■ For each i, add arc (ui, vi) with lower bound and capacity 1.

■ if flight j reachable from i, add arc (vi, ui) with capacity 1.

s

u1

u2

u3

v1

v3

v2

t

0, 1

1, 1

u4 v4

0, 1

0, 1

crew can begin 
day with any flight

flight is performed

crew can end day 
with any flight

same crew can do flights 2 and 4

-c

c

use c crews
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Airline Scheduling:  Running Time

Running time.

■ k = number of flights.

■ O(k) nodes, O(k2) edges.

■ At most k crews needed  ⇒ solve k max flow problems.

■ Arc capacities between 0 and k  ⇒ at most k augmentations per 
max flow computation.

■ Overall time = O(k4) .

Remarks.

■ Can solve in O(k3) time by formulating as "minimum flow problem."
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Airline Scheduling:  Postmortem

Airline scheduling.

■ We solved toy problem.

■ Real problem addresses countless other factors:
– union regulations:  e.g., flight crews can only fly certain number 

of hours in given interval
– need optimal schedule over planning horizon, not just 1 day
– deadheading has a cost
– simultaneously trying to re-work flight schedule and re-optimize 

fare structure

Message.

■ Our solution is a generally useful technique for efficient re-use of 
limited resources but trivializes real airline scheduling problem.

■ Flow techniques useful for solving airline scheduling problems, 
and are genuinely used in practice.

■ Running an airline efficiently is a very difficult problem.
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Image Segmentation

Image segmentation.

■ Central problem in image processing.

■ Divide image into coherent regions.
– three people standing in front of complex background scene
– identify each of three people as coherent objects
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Image Segmentation

Foreground / background segmentation.

■ Label each pixel in picture as belonging to
foreground or background.

■ V = set of pixels, E = pairs of neighboring pixels.

■ av = likelihood pixel v in foreground.

■ bv = likelihood pixel v in background.

■ pvw = separation penalty for labeling one of v and
w as foreground, and the other as background.

Goals.

■ Accuracy:  if av  > bv, in isolation we prefer to label pixel v in 
foreground.

■ Smoothness: if many neighbors of v are labeled foreground, we 
should be inclined to label v as foreground.

■ Find partition (S, T) that maximizes: ∑∑∑
=
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Image Segmentation

Formulate as min cut problem.

■ Maximization.

■ No source or sink.

■ Undirected graph.

Turn into minimization problem.

■ Since is a constant, 

maximizing

is equivalent to minimizing
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Image Segmentation

Formulate as min cut problem: G’ = (V’, E’).

■ Maximization.

■ No source or sink.
– add source to correspond to foreground
– add sink to correspond to background

■ Undirected graph.
– add two anti-parallel arcs

s tv

w

pvw

bv

pvw

pvw

pvw

av
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Image Segmentation

Consider min cut (S, T) in resulting graph.

■

■ Precisely the quantity we want to minimize.
– note if v and w on different sides, pvw counted exactly once

s tv

w

av

bv
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Project Selection

Projects with prerequisites.

■ Set P of possible projects. Project v has associated revenue pv.
– some projects generate money:  create interactive e-commerce 

interface, redesign cs web page
– others cost money:  upgrade computers, get site license for 

encryption software

■ Set of prerequisites E.  If (v, w) ∈ E, can’t do project v and unless 
also do project w.

– can’t start on e-commerce opportunity unless you’ve got 
encryption software

■ A subset of projects A ⊆ P is feasible if the prerequisite of every 
project in A also belongs to A.

– for each v ∈ P, and (v, w) ∈ E, we have w ∈ P

Project selection (max weight closure) problem: choose a feasible 
subset of projects to maximize revenue.
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Project Selection

Prerequisite graph.

■ Include an arc from v to w if can’t do v without also doing w.

■ {v, w, x} is feasible subset of projects.

■ {v, x} is infeasible subset of projects.

v

w

xv

w

x

Feasible Infeasible
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Project selection formulation.

■ Assign infinite capacity to all prerequisite arcs.

■ Add arc (s, v) with capacity pv if pv > 0.

■ Add arc (v, t) with capacity -pv if pv < 0.

■ For notational convenience, define ps = pt  = 0.

s t

-pw

u

v

w

x

y z

Project Selection

∞
pv -px

∞
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Claim. (S, T) is min cut if and only if S \ {s} is optimal set of projects.

■ Infinite capacity arcs ensure S \ {s} is feasible.

■ Max revenue because:

s t
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u

v

w

x

y z

Project Selection
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Open-pit mining (studied since early 1960’s).

■ Blocks of earth are extracted from surface to retrieve ore.

■ Each block v has net value pv = value of ore - processing cost.

■ Can’t remove block v before w or x.

Project Selection

v
xw


