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Lecture 8: Perceptron Algorithm & The Hardness of Learning
Lecturer: Roi Livni

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

8.1 Learning Half Spaces cont.

In the last lecture we’ve seen an efficient algorithm for learning half spaces in the realizable setting. We
next present a much more practical algorithm, yet with dependence on what is known as the margin of the
problem.

8.1.1 The Perceptron

We next show an algorithm that learns halfspaces efficiently In the realizable setting, but with dependence
on a margin.

Input: A sample S = {(xi, yi)}mi=1.
Intialize: w0 = 0
For i=1 to m
Set ŷi = sgn(w · xi)
Update wi → wi−1 + 1

2 (yi − ŷi)xi.
End For

Theorem 8.1. Let S = {(xi, yi)}mi=1 s.t. ‖xi‖ = R. Assume S can be separated by a margin γ: Namely,
there exists w∗ ∈ Rd such that ‖w‖ = 1 and y ·w · x > γ for all (x, y) ∼ D. Then the Perceptron algorithm,
will converge after O(R

2

γ2 ) steps.

Proof. Note that whenever the algorithm labels a point xi correctly, there is no update. Now assume the
k’th error is made on example t, set w(k) = wt, then we have

wt+1 ·w∗ = (wt + yt+1xt+1)w∗ =
(w(k−1) + yt+1xt+1)w∗ ≥ wt ·w∗ + γ

Where the first equality is from the update rule, the second equality is because wt is not update when there
are no mistake. The last inequality follows from the assumption yw∗x ≥ γ. It follows by induction on k
that w(k) ·w∗ ≥ kγ. By Cauchy Schwartz, this means that ‖w(k)‖ ≥ kγ. On the other hand, we have:

‖w(k)‖2 = ‖w(k−1) + ytxt‖2 = ‖w(k−1)‖2 + ‖xt‖2 + 2ytxtw(k) ≤
‖w(k−1)‖2 + ‖xt‖2 ≤ ‖w(k−1)‖2 +R2

Hence, by induction we obtain that ‖w(k)‖2 ≤ kR2. Taken together we obtain that

kγ ≤
√
kR.
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Alternatively

k ≤ R2

γ2 .

Given efficient algorithms for learning half spaces (in the realizable setting), we might be encouraged to
believe that the computational complexity of learning is always so well behaved. We end with a pessimistic
note of a class that is learnable in the statistical model but not learnable in the computational model of
learning, even in the realizable model. The result is due to Klivans and Sherstov and a proof can be found
in their paper [1]. A similar result under different complexity assumption (and different assumption on the
growth of k) has been proved in [2].

8.2 The hardness of learning

Theorem 8.2 (Intersection of Half–space is hard). Let χ = {±1}n, let

Ha = {x→ σsgn(w · x− b− 1/2) : b ∈ N, w ∈ Nn, |b|+ ‖w‖1 ≤ poly(n)}

and let Ha
k = {x→ h1(x)∧h2(x)∧ . . .∧hk(x) : ∀i, hi ∈ Ha} where k = dρ for some constant ρ. Then under

certain cryptographic assumption, Ha
k is not efficiently learnable.

Remark 1. The result is true in the realizable sense, i.e. in the hard instance, the true labeling stems from
the class. Therefore this result demonstrate hardness both in the agnostic case and in the realizable case.

Remark 2. There has been various hardness results in the literature, showing that certain classes are not
efficiently learnable. We note that what distinguish this result from others, is that it is true in the improper
model – i.e. we do not assume that the learner returns a hypothesis from the class and yet the problem is
hard.

Because the result is true in the improper model, it is a powerfull tool to prove hardness of various classes,
for example we can use this result to prove hardness of learning neural networks:

Corollary 8.3. Every class of neural network that is fully connected (i.e. every neuron in layer t is connected
to neuron at layer t+1, N(V,E),σsgn with at least one hidden layer, with V (0) = n and V (1) = k where k = dρ,
is not efficiently learnable.

Proof. To prove the result, it is enough to show that Ha
k ⊆ N(V,E),σ. Once we show that, if we could

learn N(V,E),σ (improperly) then we would obtain an efficient algorithm for learning Ha
k . To see that above

relation, we need to show that we can implement every f ∈ Ha
k using a neural network. Let f ∈ Ha

k such
that:

f = h1(x)∧, . . . ,∧hk(x)

and assume hi(x) = sgn(w(i) ·x− bi− 1/2). Then we define the weight vector for the wedge between neuron
v(1)
j ∈ V (1) and input node xm to be w(j)

m and we define the bias term to be b(v(1)
j ) = −bi−1/2. The output

of neuron vj is then
vj = hj(x).

If the network has one hidden layer we set as the output node v(2)(x) = σσsgn(
∑

v(1)
j (x) − k + 1/2). One

can verify that f(x) = v(x)(x) (This is similar to our argument a node can implement conjunctions).
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If the network has more then one hidden layer, we let some neuron in the second layer implement f , then
we simply propagate this neuron to the final layer by implementing and identity over the neuron (i.e. we
connect it to some neuron in the next layer with weight 1, and so on up to the final layer and we disregrad
all other neurons).
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