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Figure 6.1: A fully connected neural network with 3 hidden layer and an output neuron.

6.1 Expressiveness and Learnability of neural networks

6.1.1 Shallow Networks

To describe the expressive power of neural networks, we begin by showing that without any restriction on the
architecture Neural networks are fully expressive. In fact, even 1-hidden networks are sufficiently expressive:

Theorem 6.1. For every n, there exists a graph (V,E) with 1 hidden layer, such that N(V,E),σsgn contains
all functions f : {±1}n → ±1.

Proof. We construct a graph with |V (0)| = n and |V (1)| = 2n. We parametrized the nodes at layer V (1) be
vectors u ∈ {−1, 1}n. For every u ∈ {±1} we define a node v(1)

u (x) = σsgn (
∑

uixi − n).

One can show that v(1)
u (x) = 1 if and only if x = u. Now every function f : {±1}n → ±1 can be implemented

using

f(x) =

 ∑
u∈{±1}n

f(u) · (v(1)
u (x) + 1)

2

 =

σsgn

 ∑
u∈{±1}n

f(u)
2 · v(1)

u (x) + 1
2

∑
f(u)



The last theorem states that we can learn ALL boolean functions. However, what will be our sample
complexity to learn N(V,E),σsgn? Note that the class shatters {±1} hence has VC dimension 2n!!! Which
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means that the sample complexity is 2n! (In other words, we will need to see all instances over the hypercube
inorder to learn – this is not learning, this is memorizing!!!) To summarize

6.1.2 Deep Networks

In this section, we will show that, roughly, neural network have “full” expressive power. We’ve seen that
in general, there is no (learnable) class that can express everything – every algorithm must fail on some
instances. However, in terms of computation – we do not really want to express everything.

In practice, a learning algorithm should output a hypothesis that we can then implement on a reasonable
machine. For example: if we want to learn a problem of face recognition, after the algorithm has learnt:
the output will be a hypothesis that we would implement on our computers or inside, maybe, a camera:
Therefore, the hypothesis should be in itself an algorithm that we can efficiently compute: We will show
that Neural networks (of reasonable depth and size) have this capacity: namely to express all efficiently
computable target functions:

Given the last section, we might want to consider a more restrictive class then any network. We next,
describe the expressive power of polynomial size deep networks.

Theorem 6.2. Let T : N→ N and for every n, let Fn be the set of functions that can be implemented using
a Turring machine using runtime of at most T (n). Then threere exists constant (b, c) ∈ R such that for every
n, there is a graph (Vn, En) of size at most cT (n)2 + b such that N(Vn,En),σsgn contains Fn.

proof sketch. The proof relies on the relation between the time complexity of a program and circuit complex-
ity. Roughly, boolean circuit is a type of network which each individual neuron implements conjunctions,
disjunctions and negation of their input. Circuit complexity measures the size of a boolean circuit (in terms
of depth and number of neurons) require to calculate the function. The relation between time complexity
and circuit complexity can be seen intuitively as follows: We can model each step of the execution of a
computer program as a simple operation on its memory state. Therrefore the neuron at each layer reflect
the memeory state of the computer at corresponding time. The transition to the next layer of the network
invovles a simple calculation that can be carried out by the network.

To relate the complexity of the network to the circuit complexity we need to show that we can implement
the operations of conjunction, disjunction, and negation. The negation function can be simply implement
via xi → −xi. We can implement conjunctions and disjunctions as follows

∧xi = σsgn(
k∑
i=1

xi + k − 1) ∨xi = σsgn(
k∑
i=1

xi + 1− k)

6.1.3 The sample complexity of Neural Netoworks

Next, we discuss the sample complexity of learning the class N(V,E),σsgn in view of the last sections, we would
like to bound the complexity in terms of the number of edges and neurons.

Theorem 6.3. The VC dimension of N(V,E),σsgn is O(|E| log |E|).

To prove Theorem 6.3 We will bound the growth function τN (m). Recall that we used the VC of a class in
order to bound its growth function, however as the next Lemma shows, this can also be done in the other
direction. Namley
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Lemma 6.4. Let H be a hypothesis class and assume τH(m) = md then VC-dim(H) = O(d log d).

Proof of Lemma. Assume S is a shattered set of size m. There are md different labelings of the set S. Since
S is shattered we must have md > 2m. If m = 6d log d we have that

(6d log d)d ≤ (6d)2d ≤ 26d log d

.

We will also need the following facts (which you will prove in your exercise)

For a general class of functions F{f : f : X → Y }, we let the growth function τF (m) of a class of
functions F ⊆ {f : X → Y } is defined as

τF (m) = max
|S|=m

|{f : S → Y : ∃f ′ ∈ F , f ′(s) = f(s)∀s ∈ S}|

1. If F = F1 ◦ F2 ◦ ·Ft = {f1 ◦ f2 ◦ · · · ◦ fm : fi ∈ Fi} then

τF (m) ≤
t∏
i=1

τFt
(m)

2. suppose Y = Y1×, . . .×Yt and each F = F1×· · ·×Ft where f ∈ F can be written as f = (f1, . . . , ft).
show that

τF (m) ≤
t∏
i=1

τFt(m)

proof of Thm. 6.3. By assigning different weights between V (t) and V (t−1) we obtain different functions
from R|V (t−1)| → {±}|V (t)|. In other words, we can write N(V,E) as a composition of funciton classes
F1 ◦ F2 ◦ · · · Fd. where d is the number of layers, and each Ft is the class of all function f : R|V (t−1)| →
{±1}|V (t)| implementable by the structure of the t-th layer. By 1

τN(V,E)(m) ≤
d∏
i=1

τFi
(m)

Now each layer t is the a carteszian product of |V (t)| spaces Ft = Ht,1 × Ht,2 · · ·Ht,|V (t) . Where Ht,m is
given by the target functions parameterised by neuron m in layer t. Using 2 we get

τN(V,E)(m) ≤
d∏
i=1

τFi
(m) ≤

d∏
i=1

|V (t)∏
j=1

τHt,j
(m)

Finally, note that each Ht,j is an hypothesis of half spaces from its input node to {−1, 1} and has VC
dimension |Et,j | where Et,j are all edges to the i-th neuron at the t-th layer (see Example. 3.2). We obtain
that for some constant C by Sauer’s Lemma:
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τN(V,E)(m) ≤
∏

C ·m|Et,j | = C ·m|E|


