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Lecture 4: No Free Lunch & Sauer’s Lemma
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Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

In previous lecture we defined the notion of VC-dimension. We stated the fundemental theorem which
roughly says that the following are equivalent Learnability = finite VC dimension= Uniform Convergence =
learnable through ERM. In this lecture we will prove that learnability implies finite VC dimension and take
a first step in prove that finite VC implies uniform convergence. Namely, we will prove Sauer’s Lemma.

4.0.1 Infinite VC Dimension implies in-learnability

Suppose that H has an infinite VC-dimension, and assume it is learnable. Let 2m be such that for a sample
of size m for every distribution D |err(hS)− err(h∗)| < 1

4 with probability at least 1
8 .

Let D be a uniform distribution, supported on a set X = (x1, . . . , x2m) that shatters H, then for every
y = {0, 1}2m there is hy ∈ H such that hy(xi) = yi. Suppose we choose a subset S′ = s1, . . . , sm ⊆ X
of size m and we randomly choose a hypothesis hy (where we pick y uniformly at random) and present to
the algortihm a sample S = (s1, hy(s1), . . . , (sm, hy(sm))). The clearly hS is independent of any labelling of
elements outside of S and we obtain that

E
y∼Y

[
1
m

∑
x/∈S′

`0,1(hS(x), hy(x))|S′
]

= 1
2

Since hS′ is accurate on S′ we obtain that

E
y∼Y

[
1

2m

m∑
i=1

`0,1(hS′(xi), hy(xi))|S′
]

= 1
4

Taking expectation over S′ and employing Fubini (i.e. ES′ Ey = Ey ES′) We have that

E
y∼Y

E
(x,y)∼Dy

[
1

2m

m∑
i=1

`0,1(hS′(xi), hy(xi))
]

= 1
4

Since this is true by expectation, we obtain that for some hy we have that

E
(x,y)∼Dy

[
1

2m

m∑
i=1

`0,1(hS′(xi), hy(xi))
]
≥ 1

4

By Markov’s inequality we obtain that at least with probability 1
8 we have that:

E
S∼Dy

[err(hS)] ≥ 1
8

Corollary 4.1 (No Free Lunch Theorem). Consider any m ∈ N, any domain χ of size |X | = 2m, and any
algorithm A which outputs a hypothesis h ∈ H given a sample S. Then there exists a concept h : X → {0, 1}
and a distribution D such that:
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• The error err(f) = 0

• With probability at least 1
10 , err(hS) ≥ 1

10 .

4.1 Sauer’s Lemma

We are left with proving that finite VC dimension implies uniform convergence. As a prerequisite we are
going to prove Sauer’s lemma. Define the growth function

τH(m) = max
S⊆X,|S|=m

{|HS |}

If d = VC-dim(H) then we have τH(m) = 2m for all m ≤ d, we next prove Sauer’s Lemma that τH(m) =
O(md)

Lemma 4.2 (Sauer’s Lemma). Let H be a class with VC-dim(H) = d, then:

τH(m) ≤
d∑

t=0

(
m

t

)
= O(md)

Proof. We use induction over m + d. For the base case, if m + d = 0, if |H > 1, there exists x ∈ χ and
h1, h2 ∈ H such that h1(x) 6= h2(x) and {x} is shattered, contradiction to the fact that d = 0.

Next, we assume that statement is true for m + d = k and set out to prove it for m + d = k + 1. Let
S = {x1, . . . , xm} be a set of sample such that τH(m) = |HS |. and for every h ∈ HS let, h|m be the
restriction of h to S/{xm}. We next define to hypothesis classes:

H1 =
{
h|m : h ∈ HS

}
H2 = {h ∈ HS : h(xm) = 1 and ∃h′ ∈ HS s.t.h′(xm) = 0}

We first claim that
|HS | = |H1|+ |H2|

Indeed, for any h ∈ HS assume that h(xm) is unique, i.e. for any h′ ∈ HS we have h(xm) 6= h′(xm). Then
h is counted once by H1 (it is not in H2). On the other case, if h(xm) is not unique, then their common
restriction is counted, once by H1 and h or its counterpart is counted once by H2.

Next, by definition and induction hypothesis we have that

|H1| ≤ τH(m− 1) =
d∑

t=0

(
m− 1
t

)
.

On the other hand, we have that VC-dim(H2) ≤ d−1. Indeed, if there exists a set z1, . . . , zd that is shattered
by H2, then the set z1, . . . , zd, xm is also shattered by H (since for every hypothesis in H2 there are two
hypothesis with different assignments in H over xm). Thus, again by induction hypothesis we have that

|H2| ≤
d−1∑
t=0

(
m− 1
t

)
.
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Taken together we have that

|HS = |H1|+ |H2| ≤ 1 +
d−1∑
t=0

(
m− 1
t

)
+
(
m− 1
t+ 1

)
= 1 +

d−1∑
t=0

(
m

t+ 1

)
=

d∑
t=0

(
m

t

)
= O(md)


