
COS-511: Learning Theory Spring 2017

Lecture 23: Bandit Convex Optimization
Lecturer: Roi Livni

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

23.0.1 Online Routing

One could model the online routing problem as a multi-armed bandit problem. Each of the N “arms” of the
bandit is a path throughout the network; the loss function measures the time it takes a packet to travel along
that path. This approach would work, but the number of paths throughout the network scales exponentially
with the number of nodes. Can we do better?

Recall that the dimension of the flow polytope scales polynomially with the number of nodes in the network.
If we could optimize over the flow polytope directly, we might obtain a better regret bound.

This motivates a more general setting, called bandit convex optimization, which is OCO minus the
gradient.

23.1 Bandit Convex Optimization

In bandit convex optimization (BCO), as in online convex optimization, the player’s goal is to play some
xt ∈ K in the t-th round so as to minimize regret:

RegretT =
T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x)

In BCO, however, the player is given far more limited feedback than in OCO: only a single number, ft(xt) ∈ R,
instead of the whole loss function ft : K → R. Can we still do online learning without a gradient?

23.1.1 FKM Algorithm

The idea behind the FKM (Flaxman, Kalai, and McMahan) algorithm is to follow an unbiased estimator of
the gradient.

For a function in one dimension f : R→ R, an unbiased estimator of the derivative is given by:

f̃ ′(x) =
{

1
δ f(x+ δ) w.p. 1

2
− 1
δ f(x− δ) w.p. 1

2

As δ → 0, the estimator f̃ ′(x) tends toward f ′(x) in expectation:

lim
δ→0

E
[
f̃ ′(x)

]
= lim
δ→0

f(x+ δ)− f(x− δ)
2δ = f ′(x)
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It turns out that this approach also works in higher dimension, and we will take as an (approximate) unbiased
estimator for the gradient, the following one point sample:

∇̃fδ(x) = d

δ
f(x + δv)v where v drawn uniformly over d-dimensional unit sphere Sd−1

This estimate can in fact be interpreted as an estimate of a smoothed version of f around x, specifically by
Stoke’s theorem we have the following:

If we let f̂δ(x) = E‖u‖≤1 [f(x + δu)] then

∇f̂δ(x) = d

δ
E

‖v‖∼Sd−1

[f(x + δv)v]

How can we cheaply sample a vector v uniformly over the unit sphere? (That is, ||v|| = 1 and all directions
should be equally likely.) One way is to sample each element of v independently from the standard normal
distribution, and then scale v to have unit norm.

Assume for simplicity that 0 ∈ K.

where Kδ is defined as:

Kδ =
{

x ∈ Rd : x
1− δ ∈ K

}
We project onto this “shrunken” decision set Kδ instead of the original decision set K in order to ensure that
xt + δv lies within the domain of ft : K → R.

Algorithm 1 FKM
1: Set x1 ∈ K arbitrary
2: for t = 1, 2, ... to T do
3: yt = xt + δv, v ∼ Sn the sphere uniformly
4: Play yt, suffer loss ft(yt)
5: Update xt+1 = ΠKδ [xt − ∇̃t], ∇̃t = n

δ ft(yt) · v
6: end for

and the shrunken set is defined as Kδ = {x| x1−δ ∈ K} to avoid moving outside of K when we add the sampling
from the sphere. FKM achieves a regret bound according to the following theorem.

Theorem 23.1. The FKM algorithm attains a regret of O(d T 3
4 ).

One can use the FKM algorithm for, say, the online routing problem, and the regret will scale polynomially,
rather than exponentially, with the number of nodes in the network. To prove this, we begin with the
following two lemmas.

Lemma 23.2. ∀x ∈ Kδ, Bδ(x) = {y|y = x + δu} ⊆ K

Lemma 23.3. ∀x∗ ∈ K,∃x∗δ ∈ Kδ s.t. |x∗ − x∗δ | = O(δ)

Proof. First, note that

E
T∑
t=1

[ft(yt)− ft(x∗)] ≤ E[
T∑
t=1

ft(yt)]− ft(x∗δ) + δTG
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Next, note that |f̂δ(x)− f(x)| ≤ E‖u‖≤1 |f(x + δu)− f(x)| ≤ δG. Thus we have

E[RegretT ] ≤ E
T∑
t=1

ft(yt)− ft(x∗δ) + δTG

≤ E
T∑
t=1

[f̂δt (xt)− f̂δt (x∗δ)] + 3δTG

≤ RegretT (OGD)(∇̃1, . . . , ∇̃T ) + 3δTG

≤ D2

η
+ η

T∑
t=1
|∇̃t|2 + 3δTG by OGD regret bound

≤ D2

η
+ ηT

n2

δ2 + 3δTG by definition of ∇̃t

= O(
√
nGDT

3
4 ) taking η = δ

n
D ·
√
T , δ =

√
nD√

GT 1/4


