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Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

22.1 Learning with Partial Feedback

Recall the “learning from expert advice” game: there are N experts indexed i ∈ [N ], and in the t-th round,
the player picks one expert it and “suffers the loss” associated with that expert ft(it) ∈ {0, 1}. The player’s
goal is to choose the experts i1, . . . , iT so as to minimize the regret: the difference between the total loss
suffered by the experts whom the player selected, and the total loss suffered by expert i∗ who was, in
hindsight, the best:

RegretT =
T∑
t=1

ft(it)− min
i∗∈[N ]

T∑
t=1

ft(i∗)

Crucially, in each round t of the “learning from expert advice” game, the player is given not only the loss of
the expert whom she chose, which is a single number ft(it) ∈ {0, 1}, but also the loss of all the other experts,
which is a function ft : [N ] → {0, 1}. The multiplicative weights (MW) algorithm exploited this additional
information, by maintaining a “weight” for each expert and penalizing all experts who were wrong in round
t, not just the expert it who was chosen. However, in many real-world problems that we may wish to model
using online convex optimization, the “player” does not have access to the “loss” associated with decisions
other than the one that the player made. For example, if a (hypothetical) Princeton undergraduate is trying
to optimize his course schedule over his T = 8 semesters in college so as to minimize the number of essays
that he has to write, he does not know how many essays were assigned in classes that he did not take. This
motivates the so-called multi-armed bandit problem, a variant of “learning from expert advice” in which
the player only observes the regret of the expert whom she chose.

22.1.1 The Multi-Armed Bandit Problem

We have N experts. In each round of play t = 1, 2, . . . T , the player picks one expert it ∈ [N ] and suffers
a loss ft(it) ∈ [0, 1]. (Note that the loss here is real-valued, not binary as it was above.) The goal is to
minimize regret, defined as above.

Recall that in “learning from expert advice,” the multiplicative weights algorithm guaranteed a regret
bounded by

√
T logN . Is there an algorithm that can attain the same regret bound in the multi-armed

bandit case? Unfortunately,

Theorem 22.1. Any algorithm for the multi-armed bandit problem might attain Ω(N) regret in the worst
case.

Proof. Consider an situation where N − 1 of the experts always give a loss of 1, and one expert, chosen
uniformly at random, always gives a loss of 0.
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An optimal learner will keep trying experts until it finds the good one, thus:

E[RegretT ] = E
[
T∑
t=1

ft(it)− min
i∗∈[N ]

T∑
t=1

ft(i∗)
]

= E
[
T∑
i=1

ft(it)
]

= E [number of iterations to find good expert]

=
N∑
j=1

P[takes ≥ j iterations to find good expert ]

= N − 1
N

+ N − 1
N

N − 2
N − 1 + N − 3

N − 2
N − 2
N − 1

N − 1
N

+ . . .

= N − 1
N

+ N − 2
N

+ N − 3
N

+ . . .+ 1
N

= Ω
(
N2

N

)
= Ω(N)

22.1.2 Exp3

Algorithm 1 EXP3 Algorithm
Let x1 = 1

N 1
for t=1 to T do

choose it ∼ xt and play it

set ˆ̀
t(i) =

{
1

xt(it)ft(i) if i = it

0 otherwise
update yt+1(i) = xt(i) e−ε

ˆ̀
t(i) xt+1 = yt+1

||yt+1||1
end for

The simple algorithm presented above for the multi-armed bandit problem can be improved upon if we do
away with the distinction between “explore” and “exploit” steps.

Theorem 22.2. The regret of EXP3, with ε =
√

logn
Tn is bounded by O(

√
N logN

√
T ).

Proof. First, we claim that for every i, E(ˆ̀
t(i)) = xt(i) `(i)

xt(i) + (1 − xt(i)) · 0 = E (`t(i)). We also have that
E(xt · ˆ̀(it)) = E(`t(it)). Next, we bound the second moment of ˆ̀:

E
(

x>t ˆ̀2
t

)
= E

(
xt(it)

`2(it)
xt(it)2

)
≤ E

(
1

xt(it)

)
= n (22.1)

We now exploit the regret bound for MW algorithm we derived in previous classes. Namely:

T∑
t=1

ˆ̀
t(it)− ˆ̀

t(i) ≤ ε
T∑
t=1

xt · ˆ̀2
t + logn

ε
(22.2)
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Taken together we obtain the following regret bound

RegretT = E

(
T∑
t=1

`t(it)−
T∑
t=1

`t(i)
)

=
T∑
t=1

E

(
T∑
t=1

ˆ̀
t(it)−

T∑
t=1

ˆ̀
t(i)
)

≤ E
(
ε
∑

xt · ˆ̀2
t

)
+ T logn

ε

≤ εnT + logn
ε

Is this the best regret bound one can attain for the bandit problem? No. In fact, the minimax rate for
expected regret is O(

√
NT ). In words, this means the following:

Theorem 22.3. For the bandit problem:

• There exists an adversary that forces any algorithm to incur expected regret at least Ω(
√
NT ).

• There exists an algorithm that incurs at most O(
√
NT ) expected regret against any adversary.


