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20.1 ONS

Recall the ONS algorithm

Algorithm 1 Online Newton Step ONS
Inititalization x1 ∈ K, parameters γ, ε > 0, A0 = εId.
for t = 1, 2 . . . T do

Play xt and observe cost ft(xt)
Rank 1 update At = At−1 +∇t∇>t .
Newton step and projection:

yt+1 = xt −
1
γ
A−1
t ∇t

xt+1 = ΠAt

K (yt+1)

end for
return

Theorem 20.1. Alg. 1 with parameters γ = min{ 1
4GD , α} and ε = 1

γ2D2 , guarantees (for T > 4):

RegretT ≤ 5( 1
α

+GD)n log T

To prove Thm. 20.1 we begin by proving the following::

Lemma 20.2. Let f be an α − exp-concave function, and D, G denote bounds on the diameter of K and
on the (sub)gradient of f respectively. The following holds for all γ ≤ 1

2 min{ 1
4DG , α}, and all x,y ∈ K:

f(x) ≥ f(y) +∇f(y) · (x− y) + γ

2 (x− y)>∇f(y)∇f(y)>(x− y)

Proof. Since e−αf is α − exp-concave , it follows by Lem. ?? that for 2γ ≤ α, the function h = exp−2γf is
also concave. By concavity of h we have that:

h(x) ≤ h(y) +∇h(y) · (x− y)

Plugging ∇h(y) = −2γ exp(−2γf(y))∇f(y) and taking log:

f(x) ≥ f(y)− 1
2γ log(1− 2γ∇f(y) · (x− y))
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Next, note that |2γ∇f(y) · (x − y)| ≤ 2γGD ≤ 1
4 , and that for |z| ≤ 1

4 . , − log(1− z) ≥ z + 1
4z

2, Applying
the inequality over z = 2γ∇f(y) · (x− y) gives the lemma.

The proof now relies on the following result

Lemma 20.3. The regret of ONS (with appropriate choice of parameters) is bounded by

RegretT ≤ 4( 1
α

+GD)(
T∑
t=1
∇tA−1

t ∇t + 1)

Proof. Let x∗ ∈ K be the best decision in hindesight. By Lem. 20.2 we have for our choice of γ:

ft(xt)− ft(x∗) ≤ ∇t · (xt − x∗)− γ

2 (x∗ − x)∇t∇>t (x∗ − xt) := Rt

By definition of yt+1, we can write

At(yt+1 − x∗) = At(xt − x∗)− 1
γ
∇t

(yt+1 − x∗) = (xt − x∗)− 1
γ
A−1
t ∇t

Multiplying the transpose of the two equalitites we obtain:

(yt+1 − x∗)>At(yt+1 − x∗) = (xt − x∗)>At(xt − x∗)− 2
γ
∇>t (xt − x∗) + 1

γ2∇
>
t A
−1
t ∇t (20.1)

Since xt is the projection of yt induced by the norm of At:

(xt − x∗)At(xt − x∗) ≤ (yt − x∗)At(yt − x∗)

Pluggin the inequality to Eq. 20.1 we obtain:

∇>t (xt − x∗) ≤ 1
2γ∇

>
t A
−1
t ∇t + γ

2 (xt − x∗)>At(xt − x∗)− γ

2 (xt+1 − x∗)>At(xt+1 − x∗)

Summing up we obtain:

T∑
t=1
∇>t (xt − x∗) ≤

T∑
t=1

1
2γ∇

>
t A
−1
t ∇t + γ

2 (xt − x∗)>At(xt − x∗)− γ

2 (xt+1 − x∗)>At(xt+1 − x∗)

≤
T∑
t=1

1
2γ∇

>
t A
−1
t ∇t + γ

2 (x1 − x∗)>A1(x1 − x∗)

+ γ

2

T∑
t=2

(xt − x∗)(At −At−1)(xt − x∗)

− γ

2 (xT+1 − x∗)>AT (xT+1 − x∗)

≤
T∑
t=1

1
2γ∇

>
t A
−1
t ∇t + γ

2 (x1 − x∗)>(A1 −∇1∇>1 )(x1 − x∗) + γ

2 (x1 − x∗)>∇t∇>t (x1 − x∗)
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Where we used the fact that At − At−1 = ∇t∇>t , and that AT is p.s.d hence the last term is negative.
Overall we have that

T∑
t=1

Rt ≤
T∑
t=1

1
2γ∇

>
t A
−1
t ∇t + γ

2 (x1 − x∗)>(A1 −∇1∇>1 )(x1 − x∗)

We have that At −∇1∇>1 = εId, ε = 1
γ2D2 hence

RegretT ≤
∑

Rt ≤
1

2γ

T∑
t=1
∇tA−1

t ∇t + γ

2D
2ε

≤ 1
2γ

T∑
t=1
∇tA−1

t ∇t + 1
2γ

Since γ ≤ 1
8 ( 1
α+GD ), the result follows.

proof of Thm. 20.1. We will use the following fact about p.s.d matrices:

Tr(A−1(A−B)) ≤ log |A|
|B|

∀A,B � 0 (20.2)

Where |A| stands for the determinant of A. Using this fact we have

T∑
t=1
∇tA−1

t ∇t =
T∑
t=1

Tr
(
A−1∇t∇>t

)
=

T∑
t=1

Tr
(
A−1
t (At −At−1)

)
≤

T∑
t=1

log |At|
|At−1|

= log |AT |
|A0|

Since AT =
∑
∇t∇>t + εId and ‖∇t‖ ≤ G, the largest eigenvalue of AT is at most TG2 + ε. Hence the

determinant of AT can be bounded by |AT | ≤ (TG2 + ε)n. Hence by choice of ε and γ for T ≥ 4 we have
that

log |AT |
|A0|

≤ log (TG+ ε)
ε

n

≤ n log(TG2γ2D2 + 1) ≤ n log T.

Pluggin this to Lem. ?? we obtain the desried result.


