Lecture 20: Online Newton Step Analysis

Lecturer: Roi Livni

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

20.1 ONS

Recall the ONS algorithm

```
Algorithm 1 Online Newton Step ONS
    Inititalization \(\mathbf{x}_{1} \in \mathcal{K}\), parameters \(\gamma, \epsilon>0, A_{0}=\epsilon \mathbf{I d}\).
    for \(t=1,2 \ldots T\) do
        Play \(\mathbf{x}_{t}\) and observe cost \(f_{t}\left(\mathbf{x}_{t}\right)\)
        Rank 1 update \(A_{t}=A_{t-1}+\nabla_{t} \nabla_{t}^{\top}\).
        Newton step and projection:
\[
\begin{array}{r}
\mathbf{y}_{t+1}=\mathbf{x}_{t}-\frac{1}{\gamma} A_{t}^{-1} \nabla_{t} \\
\mathbf{x}_{t+1}=\Pi_{\mathcal{K}}^{A_{t}}\left(\mathbf{y}_{t+1}\right)
\end{array}
\]
end for
return
```

Theorem 20.1. Alg. 1 with parameters $\gamma=\min \left\{\frac{1}{4 G D}, \alpha\right\}$ and $\epsilon=\frac{1}{\gamma^{2} D^{2}}$, guarantees (for $T>4$):

$$
\operatorname{Regret}_{T} \leq 5\left(\frac{1}{\alpha}+G D\right) n \log T
$$

To prove Thm. 20.1 we begin by proving the following::
Lemma 20.2. Let f be an α - exp-concave function, and D, G denote bounds on the diameter of \mathcal{K} and on the (sub)gradient of f respectively. The following holds for all $\gamma \leq \frac{1}{2} \min \left\{\frac{1}{4 D G}, \alpha\right\}$, and all $\mathbf{x}, \mathbf{y} \in \mathcal{K}$:

$$
f(\mathbf{x}) \geq f(\mathbf{y})+\nabla f(\mathbf{y}) \cdot(\mathbf{x}-\mathbf{y})+\frac{\gamma}{2}(\mathbf{x}-\mathbf{y})^{\top} \nabla f(\mathbf{y}) \nabla f(\mathbf{y})^{\top}(\mathbf{x}-\mathbf{y})
$$

Proof. Since $e^{-\alpha f}$ is α - exp-concave, it follows by Lem. ?? that for $2 \gamma \leq \alpha$, the function $h=\exp ^{-2 \gamma f}$ is also concave. By concavity of h we have that:

$$
h(\mathbf{x}) \leq h(\mathbf{y})+\nabla h(\mathbf{y}) \cdot(\mathbf{x}-\mathbf{y})
$$

Plugging $\nabla h(\mathbf{y})=-2 \gamma \exp (-2 \gamma f(\mathbf{y})) \nabla f(\mathbf{y})$ and taking log:

$$
f(\mathbf{x}) \geq f(\mathbf{y})-\frac{1}{2 \gamma} \log (1-2 \gamma \nabla f(\mathbf{y}) \cdot(\mathbf{x}-\mathbf{y}))
$$

Next, note that $|2 \gamma \nabla f(\mathbf{y}) \cdot(\mathbf{x}-\mathbf{y})| \leq 2 \gamma G D \leq \frac{1}{4}$, and that for $|z| \leq \frac{1}{4}$., $-\log (1-z) \geq z+\frac{1}{4} z^{2}$, Applying the inequality over $z=2 \gamma \nabla f(y) \cdot(\mathbf{x}-\mathbf{y})$ gives the lemma.

The proof now relies on the following result
Lemma 20.3. The regret of ONS (with appropriate choice of parameters) is bounded by

$$
\operatorname{Regret}_{T} \leq 4\left(\frac{1}{\alpha}+G D\right)\left(\sum_{t=1}^{T} \nabla_{t} A_{t}^{-1} \nabla_{t}+1\right)
$$

Proof. Let $\mathbf{x}^{*} \in \mathcal{K}$ be the best decision in hindesight. By Lem. 20.2 we have for our choice of γ :

$$
f_{t}\left(\mathbf{x}_{t}\right)-f_{t}\left(\mathbf{x}^{*}\right) \leq \nabla_{t} \cdot\left(\mathbf{x}_{t}-\mathbf{x}^{*}\right)-\frac{\gamma}{2}\left(\mathbf{x}^{*}-\mathbf{x}\right) \nabla_{t} \nabla_{t}^{\top}\left(\mathbf{x}^{*}-\mathbf{x}_{t}\right):=R_{t}
$$

By definition of \mathbf{y}_{t+1}, we can write

$$
\begin{aligned}
A_{t}\left(\mathbf{y}_{t+1}-\mathbf{x}^{*}\right) & =A_{t}\left(\mathbf{x}_{t}-\mathbf{x}^{*}\right)-\frac{1}{\gamma} \nabla_{t} \\
\left(\mathbf{y}_{t+1}-\mathbf{x}^{*}\right) & =\left(\mathbf{x}_{t}-\mathbf{x}^{*}\right)-\frac{1}{\gamma} A_{t}^{-1} \nabla_{t}
\end{aligned}
$$

Multiplying the transpose of the two equalitites we obtain:

$$
\begin{equation*}
\left(\mathbf{y}_{t+1}-\mathbf{x}^{*}\right)^{\top} A_{t}\left(\mathbf{y}_{t+1}-\mathbf{x}^{*}\right)=\left(\mathbf{x}_{t}-\mathbf{x}^{*}\right)^{\top} A_{t}\left(\mathbf{x}_{t}-\mathbf{x}^{*}\right)-\frac{2}{\gamma} \nabla_{t}^{\top}\left(\mathbf{x}_{t}-\mathbf{x}^{*}\right)+\frac{1}{\gamma^{2}} \nabla_{t}^{\top} A_{t}^{-1} \nabla_{t} \tag{20.1}
\end{equation*}
$$

Since \mathbf{x}_{t} is the projection of \mathbf{y}_{t} induced by the norm of A_{t} :

$$
\left(\mathbf{x}_{t}-\mathbf{x}^{*}\right) A_{t}\left(\mathbf{x}_{t}-\mathbf{x}^{*}\right) \leq\left(\mathbf{y}_{t}-\mathbf{x}^{*}\right) A_{t}\left(\mathbf{y}_{t}-\mathbf{x}^{*}\right)
$$

Pluggin the inequality to Eq. 20.1 we obtain:

$$
\nabla_{t}^{\top}\left(\mathbf{x}_{t}-\mathbf{x}^{*}\right) \leq \frac{1}{2 \gamma} \nabla_{t}^{\top} A_{t}^{-1} \nabla_{t}+\frac{\gamma}{2}\left(\mathbf{x}_{t}-\mathbf{x}^{*}\right)^{\top} A_{t}\left(\mathbf{x}_{t}-\mathbf{x}^{*}\right)-\frac{\gamma}{2}\left(\mathbf{x}_{t+1}-\mathbf{x}^{*}\right)^{\top} A_{t}\left(\mathbf{x}_{t+1}-\mathbf{x}^{*}\right)
$$

Summing up we obtain:

$$
\begin{aligned}
\sum_{t=1}^{T} \nabla_{t}^{\top}\left(\mathbf{x}_{t}-\mathbf{x}^{*}\right) & \leq \sum_{t=1}^{T} \frac{1}{2 \gamma} \nabla_{t}^{\top} A_{t}^{-1} \nabla_{t}+\frac{\gamma}{2}\left(\mathbf{x}_{t}-\mathbf{x}^{*}\right)^{\top} A_{t}\left(\mathbf{x}_{t}-\mathbf{x}^{*}\right)-\frac{\gamma}{2}\left(\mathbf{x}_{t+1}-\mathbf{x}^{*}\right)^{\top} A_{t}\left(\mathbf{x}_{t+1}-\mathbf{x}^{*}\right) \\
& \leq \sum_{t=1}^{T} \frac{1}{2 \gamma} \nabla_{t}^{\top} A_{t}^{-1} \nabla_{t}+\frac{\gamma}{2}\left(\mathbf{x}_{1}-\mathbf{x}^{*}\right)^{\top} A_{1}\left(\mathbf{x}_{1}-\mathbf{x}^{*}\right) \\
& +\frac{\gamma}{2} \sum_{t=2}^{T}\left(\mathbf{x}_{t}-\mathbf{x}^{*}\right)\left(A_{t}-A_{t-1}\right)\left(\mathbf{x}_{t}-\mathbf{x}^{*}\right) \\
& -\frac{\gamma}{2}\left(\mathbf{x}_{T+1}-\mathbf{x}^{*}\right)^{\top} A_{T}\left(\mathbf{x}_{T+1}-\mathbf{x}^{*}\right) \\
& \leq \sum_{t=1}^{T} \frac{1}{2 \gamma} \nabla_{t}^{\top} A_{t}^{-1} \nabla_{t}+\frac{\gamma}{2}\left(\mathbf{x}_{1}-\mathbf{x}^{*}\right)^{\top}\left(A_{1}-\nabla_{1} \nabla_{1}^{\top}\right)\left(\mathbf{x}_{1}-\mathbf{x}^{*}\right)+\frac{\gamma}{2}\left(\mathbf{x}_{1}-\mathbf{x}^{*}\right)^{\top} \nabla_{t} \nabla_{t}^{\top}\left(\mathbf{x}_{1}-\mathbf{x}^{*}\right)
\end{aligned}
$$

Where we used the fact that $A_{t}-A_{t-1}=\nabla_{t} \nabla_{t}^{\top}$, and that A_{T} is p.s.d hence the last term is negative. Overall we have that

$$
\sum_{t=1}^{T} R_{t} \leq \sum_{t=1}^{T} \frac{1}{2 \gamma} \nabla_{t}^{\top} A_{t}^{-1} \nabla_{t}+\frac{\gamma}{2}\left(\mathbf{x}_{1}-\mathbf{x}^{*}\right)^{\top}\left(A_{1}-\nabla_{1} \nabla_{1}^{\top}\right)\left(\mathbf{x}_{1}-\mathbf{x}^{*}\right)
$$

We have that $A_{t}-\nabla_{1} \nabla_{1}^{\top}=\epsilon \mathbf{I d}, \epsilon=\frac{1}{\gamma^{2} D^{2}}$ hence

$$
\begin{aligned}
\operatorname{Regret}_{T} \leq \sum R_{t} \leq & \frac{1}{2 \gamma} \sum_{t=1}^{T} \nabla_{t} A_{t}^{-1} \nabla_{t}+\frac{\gamma}{2} D^{2} \epsilon \\
& \leq \frac{1}{2 \gamma} \sum_{t=1}^{T} \nabla_{t} A_{t}^{-1} \nabla_{t}+\frac{1}{2 \gamma}
\end{aligned}
$$

Since $\gamma \leq \frac{1}{8}\left(\frac{1}{\alpha+G D}\right)$, the result follows.
proof of Thm. 20.1. We will use the following fact about p.s.d matrices:

$$
\begin{equation*}
\operatorname{Tr}\left(A^{-1}(A-B)\right) \leq \log \frac{|A|}{|B|} \quad \forall A, B \succ 0 \tag{20.2}
\end{equation*}
$$

Where $|A|$ stands for the determinant of A. Using this fact we have

$$
\begin{aligned}
\sum_{t=1}^{T} \nabla_{t} A_{t}^{-1} \nabla_{t} & =\sum_{t=1}^{T} \operatorname{Tr}\left(A^{-1} \nabla_{t} \nabla_{t}^{\top}\right) \\
& =\sum_{t=1}^{T} \operatorname{Tr}\left(A_{t}^{-1}\left(A_{t}-A_{t-1}\right)\right) \\
\leq & \sum_{t=1}^{T} \log \frac{\left|A_{t}\right|}{\left|A_{t-1}\right|}=\log \frac{\left|A_{T}\right|}{\left|A_{0}\right|}
\end{aligned}
$$

Since $A_{T}=\sum \nabla_{t} \nabla_{t}^{\top}+\epsilon \mathbf{I d}$ and $\left\|\nabla_{t}\right\| \leq G$, the largest eigenvalue of A_{T} is at most $T G^{2}+\epsilon$. Hence the determinant of A_{T} can be bounded by $\left|A_{T}\right| \leq\left(T G^{2}+\epsilon\right)^{n}$. Hence by choice of ϵ and γ for $T \geq 4$ we have that

$$
\log \frac{\left|A_{T}\right|}{\left|A_{0}\right|} \leq \log {\frac{(T G+\epsilon)^{n}}{\epsilon} \leq n \log \left(T G^{2} \gamma^{2} D^{2}+1\right) \leq n \log T ~}_{\text {. }} \leq n
$$

Pluggin this to Lem. ?? we obtain the desried result.

