
COS-511: Learning Theory Spring 2017

Lecture 19: Strong Convexity & Second Order Methods
Lecturer: Roi Livni

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor. Logarithmic regret for

strongly convex funcitons We next revisit the OGD algorithm for special cases of convex function. Namely,
we consider the OCO setting when the functions to be observed are strongly convex

Definition 19.1. A convex function f is said to be α-strongly convex if

f(y) ≥ f(x) +∇f(x)>(y− x) + α

2 ‖y− x‖2 (19.1)

19.0.1 OGD for strongly convex functions

We next, analyse the OGD algorithm for strongly convex functions

Theorem 19.2. For α-strongly convex functions (and G-Lipschitz), OGD with step size ηt = 1
αt achieves

the following guarantee for all T ≥ 1

RegretT ≤
G2

2α (1 + log T )

Proof. Define ∇t = ∇f(xt) and let x∗ = arg min
∑T
t=1 f(x∗). Applying the definition of strong convexity to

the pair of points x∗,xt we have that

2f(xt)− f(x∗) ≥ 2∇f(xt)>(x∗ − x) + α‖x∗ − x‖2 (19.2)

Using the update rule we have that

‖xt+1 − x∗‖2 = ‖ΠK(xt − ηt∇t)− x∗‖2 ≤ ‖xt − ηt∇t − x∗‖2

Hence,
‖xt+1 − x∗‖2 − ‖xt − x∗‖2 ≤ η2

t ‖∇t‖2 − 2ηt∇t · (xt − x∗)
and,

2∇t · (xt − x∗) ≤ ‖xt − x∗‖2 − ‖xt+1 − x∗‖2

ηt
+ ηtG

2 (19.3)

Considering Eq. 19.2, Eq. 19.3 and summing up while considering ηt = 1
αt (define 1

η0
= 0):

2
T∑
t=1

ft(xt)− ft(x∗)

≤
T∑
t=1
‖xt − x∗‖2

(
1
ηt
− 1
ηt−1

− α
)

+G2
T∑
t=1

ηt

= 0 +G2
T∑
t=1

1
αt
≤ G2

α
(1 + log T )
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19.0.2 Learning Regulerized Objectives

We have so far applied SGD algorithm to optimize convex problems of the form

minimize
∑

ft(w∗)

s.t. ‖w∗‖ ≤ B

We’ve discussed that sometimes it is more convenient to consider unconstrained regulerized problems of the
form

minimize λ

2 ‖w‖
2 + 1

T

T∑
t=1

ft(w)

The following claim is left as an exercise:

Claim 19.3. For any convex function f : the funciton λ
2 ‖w‖

2 + f(w) is λ-strongly convex

Theorem 19.4. Apply OGD without projection (or with B =∞), and set ηt = 1
λt on a sequence of functions

{λ2 ‖w‖
2 + ft(w)}Tt=1 and then for any ‖w∗‖ ≤ B0 we have that:

T∑
t=1

ft(wt)− ft(w∗) ≤
G2 log T
Tλ

+ λB0

Proof. First we bound the Lipschitness of the functions λ
2 ‖w‖

2 + ft(w):

Note that ∇t = λwt +∇ft(wt), hence

wt+1 =wt −
1
λt
∇t

= (1− 1
t
)wt + 1

t

(
1
λ
∇ft(wt)

)
Hence we have that:

‖wt+1‖ = ‖1
t

∑ 1
λ
∇ft(wt)‖ ≤

G

λ

We thus have that
‖∇t‖ ≤ 2G

Thus, the result follows from applying the regret bound for strongly convex functions we get that for any
w∗:

T∑
t=1

λ

2 ‖wt‖2 + ft(wt)−
λ

2 ‖w
∗‖+ ft(w∗) ≤

4G2 log T
2λ

Hence
1
T

T∑
t=1

ft(wt)− ft(w∗) ≤
2G2 log T

Tλ
+ λ

2B
2

Applying the Online to Batch theorem we can thus obtain an algorithm for learning regulerized objective.
Note that if we want to achieve 1√

T
error, we would need to set λ = O( 1√

T
) which would still have the same

overall learning rate, but this algorithm avoids making projection steps.
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19.1 Second Order Methods

19.1.1 Motivation – Online Portfolio Selection

To motivate the construction of second order method, we return to the problem of online portfolio selection.
In online portofolio selection, at each iteration the learner chooses to distribute her wealther amongst n
stocks. Similarly to the online expert model her decision is a vector xt ∈ ∆n. Nature then chooses a
vector ‖rt‖∞ ≤ 1, where rt(i) = price of stock i at time t+1

price of stock i at time t . For exposition, will assume for simplicity that
mini rt(i) ≥ 1

G (i.e. no stock ever loses its whole value). The revenue of the learner is measure in terms of
log xt · rt. The overall gain of the learner is then∑

log xt · rt = log
∏

xt · rt = log Wealth at time T
Wealth at time 1 .

The regret is measure against the best constant rebalance portfolio (such a portfolio strategy is called
universal)

RegretT = max
x∗∈∆n

∑
log(x∗ · rt)−

∑
log(xt · rt)

Note that we have a maximization problem and not a minimization problem, yet log is a concave and not
convex problem therefore the problem is equivalent to

RegretT =
∑
− log(xt · rt)− min

x∗∈∆n

∑
− log(x∗ · rt)

As before we can apply OGD to obtain O(
√
T ) regret (Note that our assumption that rt ≥ 1

G implies that
the loss vectors are always Lipschitz). However, the log function is in fact, an exp−−concave function which
allows us to improve on these results using second order methods.

19.1.2 Second Order Methods

The idea behind second order methods is that if gradient descent linearizes the function and chooses a
step according to the first order approximation, a second order method consider always the Hessian of the
function (i.e. its second derivative). For example the Hessian of the log(rt · xt) function is given by

∇2ft(x) = rt · r>t
(rt · x)2 ,

and it is the derivative of the gradient function. The crucial property that we wish to exploit, is that the
Hessian of a the function is large in the direction of the gradient:

Definition 19.5. A convex function f is called α− exp-concave over K if the function g is concave, where
g is defined as

g(x) = e−αf(x).

The following Lemma is left as an exercise:

Lemma 19.6. A twice-differentiable function f is α− exp concave if and only if

∇2f � α∇f(x)∇f(x)>

In other words ∇2f − α∇f(x)∇f(x)> is a p.s.d matrix.
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19.1.3 Online Newton Step

We next describe the online newton step algorithm. For that we add one more notation, we will denote by
ΠA
K the projection over the set K , with respect to the metric A: i.e.

ΠA
K(y) = arg min

x∈K
(x− y)A(x− y)

Algorithm 1 Online Newton Step ONS
Inititalization x1 ∈ K, parameters γ, ε > 0, A0 = εId.
for t = 1, 2 . . . T do

Play xt and observe cost ft(xt)
Rank 1 update At = At−1 +∇t∇>t .
Newton step and projection:

yt+1 = xt −
1
γ
A−1
t ∇t

xt+1 = ΠAt

K (yt+1

end for
return

Theorem 19.7. Alg. 1 with parameters γ = min{ 1
4GD , α} and ε = 1

γ2D2 , guarantees (for T > 4):

RegretT ≤ 5( 1
α

+GD)n log T


