
COS-511: Learning Theory Spring 2017

Lecture 17: Intro. to Online Learning
Lecturer: Roi Livni

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

17.1 Online Learning

So far, the course has focused on the Statistical setting where a learner gets to observe IID sample and needs
to return a hypothesis or a concept. In reality, things can be much more complicated. First, sometimes
instead of learning over a batch sample, we would like our algorithm to learn in an online manner: where
at each point in time, the algorithm gets a new point and update its decision rule. Second, it could be that
with time the generating distribution of the sample changes, and we would like our algorithm to react to
such changes and adapts itself. Finally, we might not even want to assume that the data is generated from
some distribution, but perhaps it is even adversarially chosen to cause our algorithm to fail.

A different yet strongly related model that has seen vast amount of research is the online learning setting.
The general framework of online learning is as follows:

Online Learning: Problem Setup In a general setting, we assume that at each iteration the learner
gets to observe a feedback xt and chooses an action at ∈ A a class of action. The adversery then chooses
a loss function and inflict a loss `t(xt, at). The aim of the learner is then to minimize her regret

RegretT =
T∑

t=1
`t(xt, at)− min

a∗∈A

T∑
t=1

`t(xt, a
∗)

A problem is set to be learnable if we can achieve sublinear regret in terms of the horizon T . i.e.
RegretT = o(T ).

A special case of online learning is the setting of online convex optimization, which as we will see captures
many of the known interesting instances for online learning. We begin by recalling the setting

Online Convex Optimization: Probem Setup At each round t we get to choose a point x(t) and
suffer a loss given by an arbitrary convex function: ft(x(t)). The objective of the learner would be to
minimize the following term (which is called regret):

RegretT =
T∑

t=1
ft(x(t))− min

x∗∈K

T∑
t=1

ft(x∗)

The online setting differs in two major things from the statistical (or batch) model:

17-1



17-2 Lecture 17: Intro. to Online Learning

1. Examples are not presented in a batch but are streamlined throughout time.

2. We avoid making distributional assumptions – we do not necessarily assume that the examples are IID
distributed.

Example 17.1 (Prediction from expert advice). As a first example we consider, what is perhaps the most
well known problem in prediction theory: prediction from expert advice. At each iteration t a decision maker
has to choose an advice from one of n experts. After making her choice a loss between 0 and 1 is incured.
The scenario is repeated iteratively, and at each iteration the costs of the various experts are arbitrary. The
goal of the learner is to do as well as the best expert in hindsight.

Note that this model is closely related to learning a finite hypothesis class. We can think of each hypothesis
in a class H as an expert. At each iteration t we choose a hypothesis ht and get to observe an example
(x(t), yt) the “experts” incurs loss 1 if ht(x(t)) 6= yt and 0 else. The objective is to again to do as well as the
best hypothesis in hindsight.

The problem can modeled using convex optimization as follows: We think of the n experts as a vector
‖gt‖∞ ≤ 1 where each coordinate corresponds to the loss incured by the experts. The learner chooses at
each iteration a vector xt ∈ ∆n in the simplex over Rn i.e.

∆n = {x ∈ Rn :
∑

xi = 1 ,x ≥ 0} (17.1)

At each iteration t the learner chooses an expert according to the distribution xt and incurs expected loss
ft(xt) = gt · xt.

Thus prediction from expert advice is a special case of OCO where the cost functions are vectors with
bounded norm ‖g‖∞‖ ≤ 1 and the decision set of the learner is given by the simplex ∆n the cost function
is given by the linear map gt · xt. Note that the optimal point at the simplex ∆n is always attained by a
single expert. i.e. for cost vectors g1, . . . ,gT

min
x∗∈∆n

∑
gt · x∗ = min

i=1,...n

∑
(gt)i

Example 17.2 (Online Shortest Path). In the online shortest path setting, the decision maker is given a
directed graph (V,E), and a source-sink pair u, v ∈ V . At each iteration t ∈ [T ], the decision maker chooses
a parth pt ∈ Pu,v where Pu,v is the set of all paths beginning in u ending in v in the graph. The adversery
chooses weight of the deges of the graphs: wt : E → R. The decision maker suffers a loss

∑
e∈pt

wt(e).

Note that the problem can be modeled using the expert advice model when we think of each path as an
expert. However, this gives as exponentially many expert (hence, even going over all of the experts advice
may become prohibitive). Alternatively the online shortest path can be cast as an online convex optimization
problem. First let us consider the class of all feasible paths as integer vectors where pt(e) = 1 if the path
passes through edge e. Then the class of all feasible pathses may be characterized as:

∑
(e=(u,∗))

ρ(e) =
∑

(e=(∗,v))

ρ(e) = 1 path starts and ends and u and v respectively

∀z /∈ u, v
∑

e=(∗,z)

ρ(e) =
∑

e=(z,∗)

ρ(e) Flow conservation

Taking the convex hull (or considering distribution over pathes) we obtain the path polytope

K = {p :
∑

(e=(u,∗))

p(e) =
∑

(e=(∗,u))

p(e) = 1,∀z /∈ {u, v}
∑

e=(∗,z)

p(e) =
∑

e=(z,∗)

p(e),∀e ∈ E, 0 ≤ p(e) ≤ 1}



Lecture 17: Intro. to Online Learning 17-3

Given a distribution pt ∈ K over pathes, the expected loss inflicted on the learner for a set of weights wt is
given by

ft(pt) = wt · pt

Example 17.3 (Portfolio Selection). In the portfolio selection model, at each iteration t ∈ [T ], the decision
maker chooses a distribution of her wealth of n assets xt ∈ ∆n. The adversary independently chooses market
returns for the assets: a vector rt ∈ Rn. The entry rt(i) is the price ratio for the i-th asset. The ratio of
the wealth of the investor at iteration t+ 1 and t is rt · xt. Hence the gain in this setting is defined to be the
logarithm of this changes: log(rt · xt). The goal of the learner is then to minimize the difference:

max
x∗∈∆n

T∑
t=1

log(rt · x∗)−
T∑

t=1
log(rt · xt)

17.2 OGD

We begin by recalling the OGD algorithm that we have already analysed:

Theorem 17.1. Consider the Online Convex Optimization setting. Suppose that at each round t: ft is a
G-Lipschitz convex function and let K be a set of diameter D. Apply Alg. 1 to the sequence with step size
ηt = DG√

t
, then for the output x(1), . . . ,x(t) we have that:

RegretT =
∑

ft(x(t))−min
x∗

∑
ft(x∗) = O(DG

√
T )

Algorithm 1 Online Gradient Descent
Input: A sequence of arbitrary functions f1, . . . , fT step sizes {ηt}, x1 ∈ K

for t = 1, 2 . . . T do
Observe ft and suffer cost ft(x(t)).
Set ∇t = ∇ft(x(t)).
Update and project:

yt+1 = x(t) − ηt∇t

x(t) = ΠK(yt+1)

end for
return x1, . . . ,x(t).

Application to Expert Advice As a first application of OGD, we will apply it to the expert advice setting.
In this setting the learner chooses x1 ∈ ∆n. The diameter of ∆n is smaller than one as it is contained in
the unit ball. At each iteration the adversary chooses a function of the form ft = gt · xt, where ‖gt‖∞ ≤ 1
which gives us a bound ‖gt‖2 ≤

√
n. Since ∇ft = gt we obtain the following result for Expert Advice:

Claim 17.2. Apply Alg. 1 to the Expert advice setting then we obtain the following regret bound

RegretT ≤ O(
√
nT )

The first natural question is whether OGD obtain optimal rate? in terms of T and n. We will see in the
next lecture that we can in fact achieve a much better rate of O(

√
T logn).


