
COS-511: Learning Theory Spring 2017

Lecture 16: Backpropogation Algorithm
Lecturer: Roi Livni

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

So far we’ve discussed convex learning problems. Convex learning problem are of particular interest mainly
because they come with strong theoretical guarnatees. For example, we can apply SGD algorithm to obtain
desirable learning rates.

As it turns out, even though non-convex problems form formidable challenges in theory: They often tend
to solve many interesting problems in practice. In this lecture we will discuss the task of training neural
networks using Stochastic Gradient Descent Algorithm. Even though, we cannot guarantee this algorithm
will converge to optimum, often state-of-the-art results are obtained by this algorithm and it has become a
benchmark algorithm for ML.

16.1 Neural Networks with smooth activation functions

We recall that given a graph (V,E) and an activation function σ we defined N(V,E),σ to be the class of all
neural networks implementable by the architecture of (V,E) and activation function σ (See lectures 5 and 6).
Given a fixed architecture a target function fω,b ∈ N(V,E),σ is parametrized by a set of weights ω : E → R
and bias b : V → R. The empirical loss (0-1) is given by

L0,1
S (ω, b) =

m∑
i=1

`0,1(f (0,1)
ω,b (x(i)), yi)

Where we add the superscript (0, 1) to note that we are considering a target funciton in the class N(V,E),σσsgn
.

Of course, the aforementioned problem is non-differentiable (in fact non continous), therefore we cannot apply
SGD like method. Therefore we will do two alternations to the architectures considered so far. First instead
of σσsgn that we considered so far we will consider a different activation function. Namely,

σ(a) = 1
1 + e−a

.

That means that each neuron, now returns as output v(t)
i = σ(

∑
j ω

(t)
j,i v

(t−1)
i (x) + b

(t)
j) which is a smooth

function in its parameter. In turn the function fω,b becomes smooth in its parameter (since its a composition
of addition of smooth functions).

Remark: Note that we care about smoothness in terms of ω and b!!! While fω,b is a function of x: In
training, we consider the empirical loss as a function of the parameters and we want to optimize over these.

Of course, now the target funciton does not return 0 or 1 but a real number, therefore we also replace the
0 − 1 with a surrogate convex loss function. For concretness we let `(a, y) = (a − y)2. We now obtain the
differentiable empirical problem

LS(ω, b) =
m∑
i=1

`(fω,b(x(i)), yi)

16-1

16-2 Lecture 16: Backpropogation Algorithm

To see that these alternation do not cause any loss in expressive power or generalization we prove the
following claim

Claim 16.1. Let (V,E) be a fixed feed-forward graph, then for every sample S:

1.

inf LS(ω, b) ≤ inf L(0,1)
S (ω, b)

2. For every (ω∗, b∗)
m∑
i=1

`0,1(sgn(fω,b(x(i))), yi) ≤ LS(ω∗, b∗)

The first claim shows that we can achieve a solution that is competitive with the loss of the optimal neural
network with 0−1 activation function. The second statement tells us that the 0−1 solution of the optimizer
of LS will also have small 0− 1 loss. In other words, by minimizing the differentiable problem, we achieve a
solution with small empirical 0− 1 loss.

Proof. For the first claim, note that lima→∞ σ(a) = 1 and lima→−∞ σ(a) = 0, hence

lim
c→∞

fc·ω,c·b = f0,1
ω,b,

hence

lim
c→∞

LS(ω, b) ≤ L(0,1)
S (ω, b)

hence, the first statement hold.

As to the second statement, this follows from the fact that ` is a surrogate loss function.

Thus we turned the non-smooth problem to a differentiable problem. This means that we can now try to
apply a gradient descent method, similar to SGD as we used in convex problems. There are two issues to
over come

1. Though the loss function might be convex, the ERM problem as a whole, given its dependence on the
paratmeter is non convex. We have only shown that SGD converges when the ERM problem is convex
in the parameters.

2. To perform SGD we still need to compute the gradient ∇fω,b, where the dependence between the
parameters may be highly involved.

The first problem turns out to be a real issue and indeed there is no guarantee that SGD will converge to a
global optimum when the problem is essentially non-convex. In fact, even convergence to a local minimum
is not guaranteed, though one can show that SGD will converge to a critical point (more accurately to a
point where ‖∇fω,b‖ ≤ ε (under certain smoothness assumptions).

The problem is generally solved by re-iterating the algoirhtm from differnet intialization points: with the
hope that one of the instances will indeed converge to a sufficiently optimal point. However, all hardness
results we discussed so far apply: Therefore for any method, if the network is expressive enough to represent,
for example, intersection of halfspaces then for some instances the method must fail.

The second point is actually solvable and we will next see how one can compute the gradient of the loss:
This is known as the Backpropagation algorithm, which has become the workhorse of Machine Leanring in
the past few years.

Lecture 16: Backpropogation Algorithm 16-3

16.1.1 A Few Remarks on NNs in practice

Before presenting the Backpropagation algorithm, it’s worth discussing some simplifications we have consid-
ered here over what is often used in practice:

• the activation function We are restricting our attention to a sigmoidal activation function. These
has been used in the past. The general intuition being, that they are a smoothing of the 0−1 activation
function. In reality, training with sigmoidal funciton tend to get stuck: when the weights are very large
then the derivative starts to behave roughly like the 0−1 function which mean they vanish. One change
that was suggested is to use the relu activation function

σrelu = max(0, a)

Unlike the sigmoidal funciton, its derivative doesn’t vanish whenever the input is positive. In terms of
expressive power, they can express sigmoidal like function using

σrelu(a+ 1)− σrelu(a)

So the overall expressivity of the network doesn’t change (as long as we allow twice as many neurons
at each layer, which is the same order of neurons)

• Regularization For generalization we rely here on the generalization bound of O(E log |E|). In prac-
tice the number of free parameters (weights and bias) tend to be extremely larger then the number
of examples. Therefore certain regularization is often employed on the weight (e.g. `2, `1 regulariza-
tion). There have also been other heurisitcs for regulerizing neural networks such as dropout: Where
roughly, during training one zero out some weights during the update step. As we saw in past lecture
SGD comes with its own generalization guarantees. Generalization bounds to SGD for non-convex
optimization has been recently obtained in [?], but these are not necessarily for the learning rates used
in practice.

16.1.2 The Backpropagation Algorithm

We next discuss the Backpropogation algorithm that computes ∂f
∂ω,b in linear time.

To simplify and make notations easier, instead of carrying a bias term: let us assume that each layer V (t)

contains a single neuron v
(t)
0 that always outputs a constant 1. thus the output of a neuron is given by

σ(
∑
ωi,jv

(t−1)
j) and we supress the bias b as an additional weight ωi,0. We next wish to compute the

derivative ∇fω. Now suppose neuron v
(t)
i computes:

v
(t)
i (x) = σ(u(t)

i (x))

Where
u

(t)
i (x) =

∑
ωi,jv

(t−1)
j (x).

Then using a simple chain rule we obtain that

∂f

ωi,j
= ∂f

∂u
(t)
i

· ∂u
(t)
i

ωi,j
= ∂f

∂u
(t)
i

v
(t−1)
j (x)

Thus to compute the partial derivative with respect to a single weight, we see that it is enough to compute
∂f

∂u
(t)
i

.

16-4 Lecture 16: Backpropogation Algorithm

So we focus computing f

∂u
(t)
i

. Now again suppose f is a function of u(t)
1 , . . . , u

(t)
m , which are in turn function

of some variable z then we have by chain rule:

∂f

∂z
=

m∑
i=1

∂f

∂u
(t)
i

· ∂u
(t)
i

∂z
(16.1)

Now if z = u
(t−1)
n is the output of some neuron in a previous layer: The calculation of ∂u

(t)
i

∂u
(t−1)
n

is easy for our
choice of activation function

u
(t)
i =

∑
ωi,jσ(u(t−1)

j)⇒ ∂u
(t)
i

∂u
(t−1)
n

= ωi,nσ
′(u(t−1)

n) .

Using Eq. 16.1 for f = u
(t)
i we can recursively calculate all partial derivative ∂u

(t)
i

∂u
(t′)
n

for t′ < t, which in turn

will give us also ∂fω

∂u
(t)
i

.

The naive approach to calculate the gradient is that we calculate inductively all derivatives of the form
∂u

(t)
i

∂u
(t′)
j

for t′ < t, then using Eq. 16.1 with f = u
(t+1)
i we calculate all derivatives ∂u

(t+1)
`

∂u
(t′)
j

. This calculation

calls for each fixed j number of times proportional to |E| number of edges, therefore the overall calculation
time is given by O(|V ||E|). The back propogation algorihtm calculates the derivative through dynamical
programming and reduces the complexity to O(|V |+ |E|):

16.1.3 Backproporgation

We next consider an approach to calculate the partial derivative that takes time O(|V |+ |E|).

Algorithm 1 Backpropogation
Input: Graph G(V,E) and parameters ω : E → R.

SET T = depthG, i.e v(T) is the output neuron.
SET m(T) = 1
for t = T − 1 . . . 1 % Start from top layer and move toward bottom layer do

for i = 1, . . . , |V (t)| % Go over all neurons at layer t do
neuron v

(t)
i receive messages m(t+1)

j (v(t)
i), sums them up:

S =
V (t+1)∑
j=1

m
(t+1)
j (v(t)

i)

and passes a message m(t)
i (v(t−1)

k) to each neuron at a lower level:

m
(t)
i (v(t−1)

k) = S · ∂u
(t)
i

∂u
(t−1)
k

end for
end for

Claim 16.2. At each node v(t)
i the value S is exactly ∂fω

∂v
(t)
i

.

Lecture 16: Backpropogation Algorithm 16-5

Proof. We prove the statement by induction. The message that receives the output neuron is given by
S = ∂fω

∂fω
= 1. Next for each neuron we have by induction:

S =
|V (t+1)|∑
j=1

∂fω

∂u
(t+1)
j

· ∂u
(t+1)
i

∂u
(t)
i

(16.2)

Which by chain rule gives the desired result

The Backpropagation, each neuron does number of computation that is proportional to its degree, overall the
number of calculation is proportional to twice the number of edges which gives overall number of calculations
O(|V |+ |E|).

