
COS-511: Learning Theory Spring 2017

Lecture 15: Kernel Methods
Lecturer: Roi Livni

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

15.1 Kernel Methods

So far we’ve discussed learning linear classes, while many problems may be solved using a linear classifier we
would like to somehow elevate the tools developed so far to non–linear problems. One way to reduce non–
linear problems into a linear formalization is through high feature space embeddings. For example, assume
we wish to learn a polynomial over our data. i.e. we want to learn the optimal two degree multivariate
polynomial over the domain X . The optimization problem then becomes:

minimize `(p(x), y)

s.t. p ∈ {f : f(x) =
∑

|I|=2,I⊆[n]

αIΠi∈Ix(i)}

p is no longer linear in x and we need to parametrize it correctly in order to correctly learn it. One way to
do that is by considering p(x) is a linear functional over an embedding of x in a high dimensional feature
space. Namely consider the embeding φ : x→ R1+n+(n

2) = RO(d2) by

(φ(x))I = Πi∈Ix(i)

(Where I is a multi–index, indexing the elements of RO(d2). We can now rewrite the original problem via

minimize `(〈α, φ(x)〉, y)

s.t. α ∈ RO(d2)

To obtain generalization bounds for the learning problem we can regulate α and consider the problems

minimize `(〈α, φ(x)〉, y)
s.t. α ∈ K

Where K is some class with bounded complexity (e.g. `1 bounded, `2 bounded vectors etc.). These problems
are then linear in α yet allow us to learn much richer classes of functions: Ofcourse the main caveat is that
with higher expressivity we will also see deterioration in sample complexity /computational complexity. We
next focus on the special case `2 regularization where some of these obstacles may be overcome (under proper
assumptions):

15-1

15-2 Lecture 15: Kernel Methods

Figure 15.1: By embedding (x1, x2) into the feature space of monomials (x1, x2, x
2
1, x

2
2, x1 · x1), and learning

a linear classifier, we can learn a target function of the form (for example): p(x) = x2
1 + x2

2 − 1. This target
function will assign negative sign to every point in the circle, and positive point to every point outside of
the circle. The target function is linear in the ambient space but translates to a non-linear classifier in the
original space.

15.1.1 Learning `2 regulerized classes

Definition 15.1. A Hilbert Space H is a linear space (i.e. a vector space equipped with addition and
multiplication by scalar) equipped with a dot product which is a function 〈·, ·〉 : H ×H → R s.t.:

1. 〈x, y1 + y2〉 = 〈x, y1〉+ 〈x, y2〉

2. 〈c · x; y〉 = c〈x; y〉

3. 〈x; y〉 = 〈y;x〉.

Every dot product in a Hilbert space defines a norm ‖x‖ =
√
〈x; x〉, which satisfies the Cauchy Schwartz

inequality:

|〈x; y〉| ≤ ‖x‖‖y‖ (15.1)

Definition 15.2. A Hilbert space is called an RKHS if it is a space of continuous functions f : X → R from
a domain X to R such that: There exists a continous mapping φ : X → H for which every f ∈ H:

〈φ(x); f〉 = f(x)

The kernel function of the RKHS is defined as k(x(1),x(2)) = 〈φ(x(1));φ(x(2))〉

Note that an RKHS is completely characterized by the kernel function (as far as dot products between points
in the domain X). The following criterion is helpfull in identifying kernel functions and RKHS

Theorem 15.3 (Mercer Condition). A kernel function k defines an RKHS iff and only iff for every finite
sample {x(i)}mi=1 the kernel matrix

Ki,j = k(x(i),x(j))

is psd (positive semidefinite).

Example 15.1. The following kernel functions define a kernel space

1. k(x(1),x(2)) = (〈x(1); x(2)〉)d, Homogenous Polynomial Kernel

2. k(x(1),x(2)) = (1 + 〈x(1); x(2)〉)d, Polynomial Kernel

Lecture 15: Kernel Methods 15-3

3. k(x(1),x(2)) = exp−‖x(1)−x(2)‖2 Gaussian Kernel

4. k(x(1),x(2)) = exp−〈x(1);x(2)〉 Exponential Kernel

There are many other kernels in the literature: What makes many of them helpfull is the fact that we can
efficiently compute the kernel: As we will see this allows us to efficiently implement SGD in the Hilbert
Space. In fact, it was observed that many algorithm, may be implemented given just an oracle for dot
product: SGD is one example but also PCA and other types of optimization algorithm. This observation
has led to succefull kernelization of many other algorithms: not just classification.

(a) RBF Kernel: Using the RBF Kernel each point
is mapped to a function k(x(i),x) = e−‖x

(i)−x‖2/σ.
This mapping assign 1 to points close to x(i) and
zero for far away points. A linear function in the
ambient space, translates into a linear combinations
of such Radial basis functions.

(b) A polynomial kernel maps a point x(i) to the
function px(i) (x) = (γ + x(i) · x)d which is a polyno-
mial, thus a linear separator in the RKHS translates
into a linear combination of such polynomials, and
allows learning an optimal polynomial for classifica-
tion.

Figure 15.2: Different target functions expressible using kernel methods

The first question that comes to mind is the sample complexity of learning in an RKHS. The following result
is an immediate corollary of Lem. 12.3:

Lemma 15.4. Let H be an RKHS such that k(x(i),x(i)) ≤ 1. Let

F = {w : X → 〈w;φ(x)〉 : ‖w‖H ≤ B}, }

then

Rm(F) ≤ B√
m

As a corollary, for every convex Lipschitz loss function we have that

LD(w) ≤ LS(w) +O(L ·B log 1/δ√
m

)

A crucial point is that the result is dimension – independent, i.e. the sample complexity of F is independent
of the dimension of H. For the case of polynomial kernels, we get to learn in a feature space of monomials
that is order of magnitude of O(nd), exponential in the degree. For the case of RBF kernel, H is even infinite
dimensional – yet we can still obtain tractable sample complexity.

15.1.2 The Expressive power of Kernel Methods

At a first glance kernel methods seem like a very powerfull tool. For example, it is known that any target
function may be approximated by a multivariate polynomial of large enough degree: The polynomial kernel

15-4 Lecture 15: Kernel Methods

allows one to embed our point in the space of polynomials and thus learn a polynomial of degree d: When
one considers the space of all functions in the RKHS, these could have full expressive power (meaning we
can approximate any function we might want).

The crucial point to consider is that when learning a linear classifier in an RKHS we allways learn norm
bounded elements: In contrast with the space of all polynomials, the polynomials that may be expressed
using a vector w : X → 〈w;φ(x)〉 such that ‖w‖H ≤ B is a significantly smaller set then all polynomial of
degree d.

15.1.3 The computational cost of learning in an RKHS

At a first glance, learning in a high dimensional feature space might seem prohibitive, especially since we
need to deal with high dimensional vector. The next theorem gives a slight insight as to why the problem
need not be so prohibitive, as it show that even if the problem is embedded in a very large dimension space:
the solution may be searched in a low dimensioal space:

Theorem 15.5 (Representer Theorem). Let H be some hilbert space and consider a problem of the form:

minimize
w

m∑
i=1

`(〈xi; w〉, yi)

s.t.‖w‖ ≤ B

Then there exists a solution of the form w∗ =
∑
αix(i) the minimizes the problem.

Proof. Let w̄ be some solution. Next let HS = span{x(i)} and set H⊥ = {w : 〈w; x(i)〉 = 0, i = 1, . . .m}.
Every element in H w can be written as w = wS + w⊥ where wS ∈ HS and w⊥ ∈ H⊥. Indeed set

wS = arg min
u∈HS

‖w− u‖2

Then we claim that w−wS ∈ H⊥. Assume, otherwise then there exists x(i) s.t. 〈x(i); w〉 6= 0. Assume that
〈x(i); w〉 > 0, otherwise take −x(i) in what follows:

Set
w̄S = wS − 〈x(i); w−wS〉

x(i)

‖x(i)‖2 ∈ HS .

Then, setting ηS = 〈x(i); w−wS〉:

‖w− w̄S‖2 = ‖w−wS‖2 − 2 ηS
‖x(i)‖2 〈w−wS ; xi〉+ η2

S

‖x(i)‖4 ‖x
(i)‖2 =

‖w−wS‖ −
η2
S

‖x(i)‖2 < ‖w−wS‖2

Which contradicts minimality. It follows that w−wS− ∈ H⊥ and w = wS + w−wS .

Returning to the original problem let us write w̄ = wS + w⊥ as discussed. then note that

〈w̄; x(i)〉 = 〈wS ; x(i)〉+ 〈w⊥; x(i)〉 = 〈wS ; x(i)〉

Hence ∑
`(〈w̄; x(i)〉, yi) =

∑
`(〈wS ; x(i)〉, yi)

Lecture 15: Kernel Methods 15-5

and
‖w̄‖2 = ‖wS‖2 + ‖w⊥‖2 ≥ ‖wS‖

Taken together if w̄ minimizes the problem and ‖w̄‖ ≤ B, then wS attains the same value over the objective
and also ‖wS‖ ≤ B. Further wS ∈ span(x(i)).

Remark 1. Using the same proof, note that we can derive a representer theorem also for an objective of the
form:

λ‖w‖2 + 1
m

m∑
i=1

`(〈w; x(i)〉, yi)

Which is the more standard objective one usually tries to solve when learning convex problems.

The Kernel Trick: The idea behind the kernel trick is to employ the representer theorem to allow efficient
computations. Given the Empirical Risk Minimization problem and the representer theorem we know that
we can replace the problem

minimize 1
m

∑
`(〈φ(x(i)); w〉, yi)

s.t. ‖w‖ ≤ B

By restricting our attention to w of the form w =
∑m
i=1 αiφ(x(i)). The norm of w is then calculated using

‖w‖2 =
∑

αiαj〈φ(x(i));φ(x(j))〉 =
∑

αiαjk(x(i),x(j)) = α>Kα

Where K is the kernel matrix over the sample i.e. Ki,j = k(x(i),x(j)). Taken together, we can find an
efficient solution be solving

minimize 1
m

∑
`(
∑

αjk(x(j),x(i)), yi)

s.t. α>Kα ≤ B

Which is a convex problem over m variables: Therefore its complexity depends on the sample size.

15.1.4 Optimization and Representer Theorem, from SGD

We next will see how to optimize the original problem as well as derive the representer theorem, directly
from SGD. The idea relies on the following observations

1. the first observation is, as before, given an RKHS with efficiently computable kernel function k, we
can always calculate dot products between two points efficiently: without actually having to explicitly
embed them in a high dimensional space.

2. The second observation, is that the vectors maintaing by SGD: wt can allways be represented as a
linear combination of past examples. Indeed if wt is the vector at the t-th iteration, the update rule is
given by:

wt+1 ∝ wt − ηt+1∇t+1

15-6 Lecture 15: Kernel Methods

Where∇t+1 = `′(〈wt, φ(x(t+1))〉)φ(x(t+1)). Therefore if wt =
∑t
i=1 αiφ(x(i)), then wt+1 ∝

∑t
i=1 αiφ(x(i))+

αt+1φ(x(t+1) where

αt+1 = −ηt+1`
′(〈wt, φ(x(t+1))〉, yt+1).

To maintain a representation of wt+1 as a linear sum of {φ(x(i))} we need to calculate 〈wt, φ(x(t+1))〉
(we assume we know how to calculate `′). But given the representation and the kernel function we
have:

〈wt;φ(x(t+1))〉 = 〈
∑

αiφ(x(i)); x(t+1)〉 =
∑

αi〈x(i); x(t+1)〉 =
∑

αik(x(i),x(t+1)). (15.2)

3. Similarly we can project by calculating the norm given by

‖wt‖ =
√
〈
∑

αix(i);
∑

αix(i)〉 =
√∑

αiαjk(x(i),x(j)) (15.3)

4. Taken together, we can implement the various steps of SGD in the high dimensional space using implicit
calculation of the dot product

We summarize the kernelized version of SGD in Alg. 1 together with the guarantees in Thm. 15.6 (whose
proof is along the lines above to show that indeed the algoirthm implements SGD in a high dimensional
space).

〈wt; x(t)〉 =
T∑
i=1

αik(x(i),x(t))

Thus, by calculating the scalar product, we can avoid all calculations in the high dimensional space and
maintain a tractable algorithm!!!

Algorithm 1 Kernelized SGD for Learning
0: Input: Stochastic sample {x(t), yt}Tt=1 drawn IID, an kernel function k defining an RKHS and a sequence

of learning rates {ηt} w1 = 0.
for t = 1, 2 . . . T do

Let αt = `′t(〈wt;φ(x(t))〉, yt) %〈wt; x(t)〉 =
∑
αtk(x(t),x)

Update and Project:

wt+ 1
2

= wt − ηtαt · φ(x(t))

wt+1 = B

‖wt+ 1
2
‖
wt+ 1

2
: %‖wt+ 1

2
‖ =

∑
i,j≤t

αiαjk(x(i),x(j))

end for
return w̄T = 1

T

∑T
t=1 wt.

Theorem 15.6. Let k be a kernel and φ : X → H the corresponding embedding in the RKHS.

Consider the problem (X ,F , `) where ` is L-Lipschitz convex loss X ⊆ Rd and

F = {w ∈ H : w : x→ 〈φ(x); w〉, ‖w‖ ≤ B}

Lecture 15: Kernel Methods 15-7

. Given a access to {x(t), yt}Tt=1 ∼ D pairs distributed according to D, Run Alg. 1. After T = O
((

LB
ε

)2
)

iterations we obtain in expectation:

E [LD (w̄T)] ≤ 1
T

T∑
t=1

E
[
`(wt · x(t), y)

]
≤ min
‖w∗‖≤B

LD(w∗) + ε

