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14.1 Proof of Thm. 13.3

Before proving Thm. 13.3, we prove a Lemma, that will play a major role in the next lectures, when we
begin our discussion on Online Learning.
Lemma 14.1. Let v1, . . . ,vT be an arbitrary sequence of vectors (perhaps random) such that E

[
‖vt‖2] ≤ G2.

Let K be a convex set of diameter D. Set:

yt+1 = x(t) − ηtvt
x(t+1) = ΠK(yt+1)

Then ∑
vt · x(t) − min

x∗∈K
vt · x∗ ≤ DG

√
T

Proof. We first upper bound vt · (x(t) − x∗) using the update rule for x(t+1)

‖x(t+1) − x(t)‖2 = ‖ΠK
(
x(t) − ηtvt − x∗

)
‖2 ≤ ‖x(t) − ηtvt − x∗‖2 (14.1)

Hence,

‖x(t+1) − x(t)‖2 ≤ ‖x(t) − x∗‖2 + η2
t ‖vt‖2 − 2ηtvt · (x(t) − x∗)

Rearranging terms we get:

2E
[
vt · (x(t) − x∗)

]
≤ E

[
‖x(t) − x∗‖2 − ‖x(t+1) − x∗‖2

ηt

]
+ ηtG

2 (14.2)

Summing Eq. 14.1 and Eq. 14.2 from t = 1 to T , and setting ηt = D
G
√
T

:

E
[∑

vt · (x(t) − x∗)
]
≤

T∑
t=1

E
[
‖x(t) − x∗‖ − ‖x(t+1) − x∗‖2

2ηt

]
+G2

T∑
t=1

ηt

≤
T∑
t=1

E
[
‖x(t) − x∗‖2

]( 1
ηt
− 1
ηt−1

)
+G2

T∑
t=1

ηt

≤ D2
T∑
t=1

(
1
ηt
− 1
ηt−1

)
+G2

T∑
t=1

ηt Telescoping Series

≤ D2 1
ηT

+G2
T∑
t=1

ηt

≤ 3DG
√
T
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Proof of Thm. 13.3 By convexity of f we have that

f( ¯x(t))− f(x∗) ≤ 1
T

∑
f(x(t))− f(x∗) ≤ 1

T

∑
∇f(x(t)) · (x(t) − x∗)

Taking expectation we obtain that

E
[
f( ¯x(t))− f(x∗)

]
≤ 1
T

∑
E
[
∇f(x(t)) · (x(t) − x∗)

]
Now recall that for fixed x(t) we have that given past observations E

[
∇̂t|∇̂1:t

]
= ∇(f(x(t))). Since x(t) is

determined by past events we have that:

E
[
∇̂t · (x(t) − x∗)|∇̂1:t−1

]
= E

[
∇f(x(t)) · (x(t) − x∗)|∇̂1:t−1

]
Over all we obtain:

E
[
f( ¯x(t))− f(x∗)

]
≤ 1
T

T∑
t=1

E
∇̂1:t−1

Ê
∇t

[
∇f(x(t)) · (x(t) − x∗)|∇̂1:t−1

]
≤

≤ 1
T

T∑
t=1

E
∇̂1:t−1

Ê
∇t

[
∇̂t · (x(t) − x∗)|∇̂1:t−1

]
= 1
T

E

[
T∑
t=1
∇̂t · (x(t) − x∗)

]

Applying Lem. 14.1 with vt = ∇̂t we obtain

E
[
f( ¯x(t))− f(x∗)

]
≤ 1
T

3DG
√
T = 3DG√

T

14.1.1 A glimpse at Online Learning

A striking fact of our proof is that the backbone relied on a bound over the gradients in Lem. 14.1 which
is completely deterministic!!! Therefore, it is worth asking how far we can take the proof of Thm. 13.3.
Suppose now, that instead of trying to minimize a stationary function f , we wish to minimize a sequence of
function f1, . . . , fT . Namely consider the following setting:

Online Convex Optimization: Probem Setup

At each round t we get to choose a point x(t) and suffer a loss given by an arbitrary convex function:
ft(x(t)). The objective of the learner would be to minimize the following term (which is called regret):

RegretT =
T∑
t=1

ft(x(t))− min
x∗∈K

T∑
t=1

ft(x∗)
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Consider a learner who chooses at each step

yt+1 = x(t) − ηt∇ft(x(t))
x(t+1) = ΠK(yt+1).

This learner is depicted in Alg 1. Then again by convexity we have as before∑
ft(x(t))− ft(x∗) ≤

∑
∇t(x(t) − x∗)

Where we denote ∇t = ∇ft(x(t)). Applying Lem. 14.1 we obtain the following guarantee over the regret

RegretT ≤ 3DG
√
T

We summerize this in the following result:

Theorem 14.2. Consider the Online Convex Optimization setting. Suppose that at each round t: ft is a
G-Lipschitz convex function and let K be a set of diameter D. Apply Alg. 1 to the sequence with step size
ηt = DG√

t
, then for the output x(1), . . . ,x(t) we have that:

RegretT =
∑

ft(x(t))−min
x∗

∑
ft(x∗) = O(DG

√
T )

Algorithm 1 Online Gradient Descent
Input: A sequence of arbitrary functions f1, . . . , fT step sizes {ηt}, x1 ∈ K

for t = 1, 2 . . . T do
Observe ft and suffer cost ft(x(t)).
Set ∇t = ∇ft(x(t)).
Update and project:

yt+1 = x(t) − ηt∇t
x(t) = ΠK(yt+1)

end for
return x1, . . . ,x(t).

14.1.2 Online Learning

In terms of learning, we can consider a sequential setting where a learner chooses at each iteration t a
classifier wt: Then an adversery outputs an arbitrary point (xt, yt), and the learner suffers loss `(wt ·xt, yt).
The performance of the learner is then measured in terms of regret:

RegretT =
T∑
t=1

`(wt · xt, yt)− min
w∗∈K

`(w∗ · xt, yt)

By Thm. 14.2 we using the OGD algorithm, we can obtain a regret bound of O(
√
T )1: This is completely

comparable with the bound we have obtained so far Statistical Learning Theory. Namely if T > 1
ε2 we obtain

that
1
T

RegretT ≤ O(ε)

1Here we neglect all terms that depend on Lipschitness and boundness of the class
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In future lecture we will see how to derive the Statistical Learning Result directly from these regret bounds.
Note however, that unlike the Statistical setting: an ERM algorithm will tend to fail (as the points are not
choosing through some distribution but are adverserially picked). On the other hand, we can still construct
algorithms for the online setting that achieve similar guarantees as in the stochastic setting. Moreover, this
setting is much more general as it does not assume that the points to be learnt are picked from a stationary
distribution.


